
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Koord: a language for programming and verifying
distributed robotics applications

RITWIKA GHOSH, University of Illinois at Urbana-Champaign, USA

CHIAO HSIEH, University of Illinois at Urbana-Champaign, USA

SASA MISAILOVIC, University of Illinois at Urbana-Champaign, USA

SAYAN MITRA, University of Illinois at Urbana-Champaign, USA

A robot’s code needs to sense the environment, control the hardware, and communicate with other robots.

Current programming languages do not provide suitable abstractions that are independent of hardware

platforms. Currently, developing robot applications requires detailed knowledge of signal processing, control,

path planning, network protocols, and various platform-specific details. Further, porting applications across

hardware platforms remains tedious.

We present Koord—a domain specific language for distributed robotics—which abstracts platform-specific

functions for sensing, communication, and low-level control. Koord makes the platform-independent control

and coordination code portable and modularly verifiable. Koord raises the level of abstraction in programming

by providing distributed shared memory for coordination and port interfaces for sensing and control. We have

developed the formal executable semantics of Koord in the K framework. With this symbolic execution engine,

we can identify assumptions (proof obligations) needed for gaining high assurance fromKoord applications. We

illustrate the power of Koord through three applications: formation flight, distributed delivery, and distributed

mapping. We also use the three applications to demonstrate how platform-independent proof obligations can

be discharged using the Koord Prover while platform-specific proof obligations can be checked by verifying

the obligations using physics-based models and hybrid verification tools.

1 INTRODUCTION
Distributed robotics applications (DRAs) have the potential to transform manufacturing [Gau-

thier et al. 1987; Pires and Da Costa 2000], transportation [Gerla et al. 2014; Guo and Yue 2012],

agriculture [Blender et al. 2016; R Shamshiri et al. 2018], delivery [Mosterman et al. 2014], and

mapping [Thrun et al. 2002]. Following the trends in cloud, mobile, and machine learning appli-

cations, programmability is key in unlocking this potential as robotics platforms become more

open, and hardware developers shift to the applications marketplace. Available domain specific

languages (DSL) for robotics are tightly coupled with platforms, and they combine low-level sensing,

communication, and control tasks with the application-level logic (see Section 9 for more details).

This tight-coupling and the attendant lack of abstraction hinders application development on all

fronts—portability, code reuse, and verification and validation (V&V).

Building a reliable DRA involves addressing two very different types of concerns: (1) Correctness

arguments for coordination algorithms under concurrency and asynchrony are hardware platform-
independent, and use techniques from formal verification and distributed computing. (2) Correctness

arguments for physical interactions of the robots (e.g., sensing and motion control) under noise

and disturbances are platform-dependent, and use techniques from control theory. Verification

frameworks, such as hybrid automata [Alur and Dill 1994; Henzinger et al. 1995] and hybrid

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

2475-1421/2020/11-ART $15.00

https://doi.org/

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article . Publication date: November 2020.

https://doi.org/

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Ritwika Ghosh, Chiao Hsieh, Sasa Misailovic, and Sayan Mitra

dynamic logic [Platzer 2018], can combine these different types of reasoning at a mathematical level,

but are far too abstract for generating executable programs for applications of realistic complexity.

At the other end, domain specific languages (DSL) for robotics are practical for programming, but

do not provide precise semantics and have no support for verification [Blanco 2009; Murali et al.

2019; St-Onge et al. 2017].

Symbolic
program

execution

Koord symbolic
execution

engine

Platform-
independent
Abstraction

Z3 based Koord
prover

Platform-
independent

Proof

Requirements
e.g.

invariance

Koord
program

Koord
execution

engine

Sensing
actuation,
comm. libs

per platform

Reachability
Queries

per platform

Platform-
dependent

Proof

From same formal semantics

Program
Execution per

platform

Fig. 1. Koord simplifies DRA programming with key
abstractions, and tools for verification that can combine
different techniques for program logic and platform-
specific controllers.

Our Work. We aim to improve the reliable

engineering of a diverse class of DRAs by en-

abling different types of reasoning at the code

level. Our insight is to cleanly decompose the

correctness proof of thewhole application code

into (1) platform-independent proof obligations
for distributed program logic, and (2) platform-
dependent proof obligations for controllers on
each target platform. If such a decomposition

exists, it enables us to plug in analyses from

different communities for the different proof-

obligations.

We embody our approach in Koord system:

a language for DRAs, its formal executable se-

mantics, and supporting verification and test-

ing tools. A user can write code for DRAs using the Koord language. This Koord program can

be deployed on ground vehicles and drones, simulated with virtual vehicles, and verified via our

decomposition approach and various existing verification tools. Figure 1 shows the overall workflow

of verifying a Koord program with the tools in the Koord system. We present the key features of

the Koord system in this work.

First, Koord provides abstractions and language constructs for coordination and control that

separate the platform-independent program logic, such as distributed decisionmaking, from platform-
dependent control tasks for sensing, planning, and actuation. This makes Koord applications very

succinct and readable. A program to make a set of robots form a line can be written in 10 lines

of Koord code (see Figure 3). In another application, robots coordinate and visit waypoints in

a mutually-exclusive fashion, while avoiding collisions—all in 50 lines of Koord code. A third

Fig. 2. Swarm formation
show by FireFly Inc. (Left).
A Koord application for
formation control simu-
lated on 16 virtual drones
(Top Right). Racecar and
drone platforms on which
Koord applications has
been deployed (Bottom
Right).

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article . Publication date: November 2020.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Koord 3

application, discussed briefly here, accomplishes distributed mapping. Development of these and

other nontrivial DRAs, demonstrate the utility of the Koord abstractions.

Second, we have developed the executable semantics of Koord in K [Rosu and Serbanuta 2014].

To our knowledge this is the first formalization of a programming language for DRAs which

has been deployed on actual heterogenous platforms. We show that Koord’s executable semantics

indeed enables us to plug-in different verification techniques for the platform-independent and

the platform-dependent proof obligations. We are able to decompose and verify geofencing and

collision-avoidance invariants for the above mentioned Koord applications. We show that:

• Platform-independent proof obligations can be formulated as inductive invariance checks. The

invariance checks are further encoded as SMT problems by applying symbolic executions over Ko-
ord programs, and eventually discharged with Z3. Our experiments show that for upto 15 robots,

the time taken for symbolic execution remains relatively stable. The time taken for SMT encoding,

and the solving itself increases, but the process completes in the order of seconds using Z3 in

Python. This suggests that our verification approach for such proof obligations can scale to

multi-robot systems with tens of robots.

• Platform-dependent proof obligations can be formulated as reachability queries and can be

effectively discharged using any number of tools including the simulation-driven reachability

tool DryVR [Fan et al. 2017].

Finally, the K semantics of Koord allows us to generate a reference verified interpreter. A multi-

platform Koord execution engine has been implemented to deploy Koord programs to robotic

platforms, and program execution on the actual platforms conforms to the formal semantics (details

of these experiments are presented in [Ghosh et al. 2020]).

Contributions. In summary, our main contributions are: (1) abstractions to enable separating

analyses of platform-independent distributed program logic, and platform-dependent controllers.

(2) a formal executable semantics of Koord and case studies demonstrating verification approach and

supporting tools (3) a realizable language design with a compiler implementation and supporting

middleware, which can be deployed on actual hardware platforms.

2 OVERVIEW
We present an example application for formation control to highlight the main features of the Koord
programming system. This application makes a collection of drones form a pattern as is seen in

aerial shows (Figure 2). The Koord application LineForm of Figure 3 is a basic version that makes a

collection of drones line up uniformly between two extremal drones.

2.1 The Koord language
Koord is an event-driven language in which application programs use shared variables for coordina-
tion across robots and ports for interfacing with platform-specific controllers.

1 using Motion:

2 sensors: pos psn
3 actuators: pos target
4

5 allread: pos x[Nsys]

6 TargetUpdate:

7 pre: True
8 eff:
9 x[pid] = Motion.psn

10 if not(pid == Nsys − 1 or pid == 0) :
11 Motion.target = mid([x[pid+1],x[pid−1]])

Fig. 3. Koord program LineForm for a set of robots to form a line.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article . Publication date: November 2020.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Ritwika Ghosh, Chiao Hsieh, Sasa Misailovic, and Sayan Mitra

Port abstractions for platform-dependent control. For the same abstract functions, such

as reading the current position, sensing obstacles, and moving from point 𝑎 to point 𝑏 in space,

different robot platforms need different implementations. One of the key abstractions in Koord
hides these implementation details and allows the robot program to interact with its environment

through sensor and actuator ports. For example, LineForm uses a module (library) called Motion
which provides a sensor port called psn as declared on Line 2 in Figure 3. The sensor port psn has

data type pos expressing the 𝑥 , 𝑦 and 𝑧 coordinates of a point in 3D space, and it publishes the

robot’s position with some periodicity and accuracy. The Motion module also provides an actuator

port called target as declared on Line 3 of LineForm, for specifying a target position that the

controller should try to drive to. Implementations of Motion would use different strategies for

different platforms. In our experiments, the Motion module for a drone uses an indoor camera

based positioning system to update the psn port, and it uses an RRT-based [LaValle 1998] path

planner and PID controller. On the other hand, for a small racecar platform, the implementation

uses a model-predictive controller [Grüne and Pannek 2017; Kvasnica et al. 2004].

Distributed shared variables for platform-independent coordination. The second impor-

tant abstraction in Koord provides shared variables for participating robots to communicate and

coordinate. At Line 5 in LineForm, the variable 𝑥 , declared with the allread keyword, is a shared

array which all robots can read from, but each robot pid can only write to 𝑥 [pid]. This shared array
makes it possible for a robot to read the current position of other robots in a single line of code.

LineForm uses (a) the unique integer identifier pid for the robot executing the program and

(b) the number Nsys of all participating robots. For multiple robot programs writing to shared

variables Koord provides concurrency control with mutual exclusion and atomic blocks. In [Ghosh

et al. 2020], shared variable writes are propagated to all robots through UDP message passing over

WiFi. In Section 8.1, we briefly explain how shared memory and mutual exclusion is realized thru

message passing in [Ghosh et al. 2020].

Event-driven style of programming. In Koord programs, events written using a precondition-

effect style define how program variables are updated. The effect of an event can only be executed

if its precondition is true. LineForm uses a single TargetUpdate event, which updates the shared

variable 𝑥 [pid] (Line 9) and sets the target of each robot (except the extremal robots) to be the

center of the position of its neighbors (Line 11). This event has a precondition which always

evaluates to true. As we shall see in Section 3.3, Koord semantics ensures a synchronous round-by-

round execution of events for all robots. That is, for a given execution parameter 𝛿 > 0, one event

per robot can occur every 𝛿 time.

2.2 Semantics and decomposed verification
In a DRA, multiple instances of the same program are executed by all participants to solve a problem.

Execution semantics of such a DRA are complicated by issues of asynchrony, concurrency, as well

as the interactions between software and the physical environment. We have developed the full

executable semantics of Koord in the K framework [Rosu and Serbanuta 2014]. In solving this

problem, we made a few simplifying assumptions:

• The execution of the Koord program advances in a synchronous, round-by-round fashion. Each

round lasts for some 𝛿 > 0 time; 𝛿 is an execution parameter, which is assigned values obeying

network and platform constraints discussed further in Section 8.1.

• During a 𝛿-duration round, the robots compute, move, and communicate with each other through

distributed shared memory.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article . Publication date: November 2020.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Koord 5

We discuss these assumptions and their rationale in more detail in Section 3.3. While these assump-

tions sidestep the issues of asynchrony and failures, they make our executable semantics tractable.

Our experiments show that it is easy to check whether these assumptions are met by any platform

deploying a Koord application [Ghosh et al. 2020].

Koord’s executable semantics enables explicit and exhaustive exploration of non-deterministic

behaviors of Koord applications. We have also implemented a Koord Prover tool on top of these se-

mantics for symbolically checking inductive invariants for Koord programs.We considerGeofencing,
a natural requirement for LineForm: given a rectangle rect (a, b), defined by two corners a and b, if
all robots are initialized within rect (a, b), then they stay in rect (a, b) at all times. This requirement

can be stated as an invariant of the system:

Invariant 1.

∧
𝑖∈ID

(
Motion.psn𝑖 ∈ rect (a, b) ∧ 𝑥 [𝑖] ∈ rect (a, b)

)
The user can specify such invariants as Boolean expressions allowed by the Koord language

syntax. Checking Invariant 1 requires reasoning about both platform-dependent and independent

parts of the application. Using Koord tools one can reason about it in a decomposed fashion:

(1) Assuming that all shared position 𝑥 [𝑖] are in rect (a, b), we have to show that the targets

computed by LineForm are in rect (a, b). This platform-independent proof obligation is about

the correctness of the program logic of LineForm. To check this, one has to compute the

reached states of the TargetUpdate event and check that Invariant 1 still holds in all reached

states.The Koord Prover uses the symbolic semantics for post event configuration computation

and encodes this check as an SMT problem. In case of Invariant 1, and many other applications

and invariants, this proof obligation is discharged fully automatically.

(2) Assuming that the sensed current position Motion.psn𝑖 and the computed target are in rect (a, b),
we have to show that a given robot’s controller indeed keeps the position in rect (a, b). This
platform-dependent proof obligation is about the correctness of the controller implemented

in the Motion module. Koord helps formalize these obligations or assumptions about Module
implementations to connect with analysis tools for dynamical and hybrid systems. For instance,

we can restate the proof obligation as the following assumption:

Assumption 1.

∀𝑡 ∈ [0, 𝛿], traj(Motion.psn, Motion.target, 𝑡) ∈ rect (Motion.psn, Motion.target),
where traj is an uninterpreted function that gives the position of the robot at time 𝑡 , as a function

of the target and initial position at the beginning of the round.

To check these types of assumptions, we can use a reachability analysis tool for dynamical and

hybrid systems with or without the complete model of traj, of which there are many [Bak and

Duggirala 2017; Chen et al. 2013; Duggirala et al. 2013; Fan et al. 2017; Frehse et al. 2011]. In our

experiments we use the simulation-driven reachability tool DryVR [Fan et al. 2017] which is

scalable and provides probabilistic guarantees, but does not require complete dynamical models

of traj.
This decomposition of the platform-dependent and platform-independent components of a Koord
program enables different tools and analysis techniques to be used to verify its correctness.

2.3 Koord Compiler, Implementation, and Simulator
In this paper, we present the Koord design, semantics and associated formal analysis techniques,

without going into the intricate details of implementing the language and system. In Section 8, we

briefly discuss the compiler for Koord. The overall toolchain including an open source implementa-

tion of Koord is presented in [Ghosh et al. 2020], and it offers programming tools for simulation,

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article . Publication date: November 2020.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Ritwika Ghosh, Chiao Hsieh, Sasa Misailovic, and Sayan Mitra

and hardware deployment. We deployed Koord applications on heterogeneous multi-robot systems

of drones and small racecars.

2.4 Engineering reliable DRAs
Koord tools support the engineering of reliable systems by helping discover and validate platform-

dependent proof obligations (see case studies in Section 5 and Section 6). In general, if the assump-

tions needed for proving correctness of an application are too strong, a DRA engineer could either

revise the assumptions or modify the invariant requirement so that weaker assumptions may be

sufficient. Using the high-fidelity Koord simulator which is a part of the Koord programming tools,

we can gain insights about when such assumptions are violated.

For instance, we see in Section 5 that reachability analysis using DryVR is able to detect violations

of Assumption 1. A drone model with poor PID control could temporarily go out of bounds due to

inertia while moving towards the target. Upon configuring the same drone model with different

PID control parameters, DryVR was able to verify Assumption 1. Similarly, DryVR is able to detect

that the racecar may not be able to follow a path computed by a path-planner as closely as required

for maintaining safe distances between vehicles in Section 6. As we shall see in these case studies,

these assumptions require reasoning only about the platform-dependent control ports, allowing us

to decouple their verification from the distributed program logic.

3 THE KOORD LANGUAGE
In this section, we present the syntax and the semantics of Koord. When a Koord application is

deployed on a fleet of Nsys robots, each robot runs an instance of the same program. There is a

known set of identifiers ID = {0, 1, . . . ,Nsys−1}, and each robot is assigned a unique index pid ∈ ID.

3.1 Syntax
Figure 4 shows the core grammar of Koord syntax in BNF. Each robot program essentially consists

of (a) declarations of modules to interface the program with sensors/actuator ports, (b) declarations

of shared and local program variables, and (c) events, consisting of preconditions and effects.

Koord supports the following three types of names for reading/writing values:

(i) Sensor and actuator ports are used to read from sensor ports and write to actuator ports of

controllers.

(ii) Local program variables record the state of the program.

(iii) Distributed shared variables are used for coordination across robots. All shared variables can

be read by all participating robots; an allwrite variable can be written by any participating

robot; while an allread variable can be written only by a single robot.

Aside from the basic shared and local variable declarations, the user can also define functions and

abstract data types (tuples of the basic data types.

Robot programs (rule Program) can import sensor/actuator modules which will be used by the

program to interact with the environment. The module import grammar production specifies the

interfaces or ports: it contains all input and output ports for actuators (APorts) and sensors (SPorts)
that the program uses.

Users can then optionally specify the initial values of program variables (rule Init). The main

body of the program is a sequence of events (rule Event) which include a Boolean precondition

(pre) and and an effect (eff). The effect of an event is also a statement (rule Effect).
A statement (rule Stmt) in Koord resembles those in most imperative languages and includes

conditional statements, function calls, assignments, blocks of statements, etc. Mutual exclusion is

always an essential feature when shared variables are involved.Koord provides a lockingmechanism

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article . Publication date: November 2020.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Koord 7

using the keyword atomic to update shared variables mutually exclusively, wherein only one robot

is allowed to execute the statements within an atomic block in a round.

These features enable a natural separation of the discrete computational (platform-independent)

and dynamic (platform-dependent) behaviors. To discuss these behaviors, we need to establish the

notion of system and robot state.

Program ::= Defs? Module* DeclBlock Init? Event+

Defs ::= FuncDef * AdtDef *
FuncDef ::= def fun identifier (Param*) : Stmt+
AdtDef ::= def adt identifier : Decl+
Param ::= Type identifier

Module ::= using module identifier : SPorts APorts
SPorts ::= sensors : Decl+

APorts ::= actuators : Decl+

Decl ::= Type identifier | Type identifier =Val
ARDecl ::= Type identifier [Nsys]
Type ::= int | float | bool | pos | adt

| Type [Int] | List ⟨Type⟩ | Queue ⟨Type⟩

DeclBlock ::= AWDecls ARDecls LocalDecls
AWDecls ::= allwrite : Decl+

ARDecls ::= allread : ARDecl+

LocalDecls ::= local : Decl+

Init ::= init : Stmt+
Event ::= identifier : pre (Cond) eff : Stmt+

Expr ::= AExpr |BExpr
AExpr ::= AExpr AOp AExpr

| Expr++ | -AExpr | Var | AVal
AOp ::= + | − | ∗ | /
BExpr ::= Expr RelOp Expr |Expr COp Expr

| not Expr | Var | BVal
RelOp ::= ≥ |≤ |≥ |== |> |< |≠
COp ::= and | or

Stmt ::= Assign | FnCall | Atomic
| Ite | Loop | Return

Assign ::= Var = Expr
Ite ::= if BExpr : Stmt+ ElseBlk?
ElseBlk ::= else : Stmt+
FnCall ::= identifier (Expr+)
Atomic ::= atomic : Stmt+
Loop ::= for identifier in AExpr : Stmt+
Return ::= return Expr | return

Var ::= identifier | identifier [Expr]
| identifier .identifier

Val ::= AVal | BVal
AVal ::= Int | Float
BVal ::= Bool

Fig. 4. Core Koord program syntax. Given an nonterminal NT, NT? means that it is optional in the syntax at
that position, NT* refers to zero or more occurrences, and NT+ refers to one or more occurrences. (𝐸1 | 𝐸2)
denotes that one can use either 𝐸1 or 𝐸2. We indicate Koord keywords and data types in bold.

3.2 Robot and System Configurations
The semantics of a Koord program execution is based on synchronous rounds. Each round is

divided into program transitions and environment transitions that update the system configuration.
In each round, each robot performs at most one event. The update performed by a single robot

executing an event is modeled as an instantaneous transition that updates the program variables

and potentially actuator ports; however, different events executed by different robots may interleave

in an arbitrary order. In between the events of successive rounds, 𝛿 > 0 duration of time elapses,

the program variables remain constant while the values held by the sensor and actuator ports may

change. These are modeled as environment transitions that advance time as well as the sensor

and actuator ports. Thus, each round consists of a burst of (at most Nsys) program transitions

followed by an environment transition. This is a standard model for synchronous distributed

systems where the speed of computation is much faster than the speed of communication and

physical movement [Attiya and Welch 2004; Lynch 1996a].

We now describe the system state, or system configurations which we use to formalize Koord
semantics.

System configurations. A system configuration is a tuple 𝒄 = ({𝐿𝑖 }𝑖∈ID, 𝑆, 𝜏, turn), where
(i) {𝐿𝑖 }𝑖∈ID is an indexed set of robot configurations–one for each participating robot. 𝐿𝑖 refers

to the configuration of the 𝑖-th element, i.e., the 𝑖-th robot in the system.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article . Publication date: November 2020.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Ritwika Ghosh, Chiao Hsieh, Sasa Misailovic, and Sayan Mitra

(ii) 𝑆 : Var ↦→ Val is the global context, mapping all shared variable names to their values.

(iii) 𝜏 ∈ R≥0 is the global time.
(iv) turn ∈ {prog, env} is a binary bookkeeping variable determining whether program or envi-

ronment transitions are being processed.

C denotes the set of all possible system configurations. Bookkeeping variables are invisible in

the language syntax, and only used in the semantics. While turn in the system configuration it

a bookkeeping variable, it is directly used to achieve the separation of platform-dependent and

platform-independent concerns in the semantics. We now define the robot configurations which

define the state of every robot in the system.

Robot configurations. A robot configuration is used to specify the semantics of each robot. As

a Koord program is run on a system of robots, each participating robot would have its own set of

module ports and local variables, along with a local copy of each shared variable. Given a Koord
program 𝑃 , we can define Var be the set of variables, Val be the set of values that an expression

in Koord can evaluate to, CPorts be the set of sensor and actuator ports of the controller being used,

and Events the set of events in 𝑃 . A robot configuration is a tuple 𝐿 = (𝑀, cp, turn), where
(i) 𝑀 : Var ↦→ Val is its local context mapping both local and shared variables to values. Note

that this implies𝑀 includes a copy of shared variable values.

(ii) cp : CPorts ↦→ Val is the mapping of sensor and actuator ports to values.

(iii) turn ∈ {prog, env} is a bookkeeping variable indicating whether this robot is executing a

program or environment transition.

For readability, we use the dot (“.”) notation to access components of a robot configuration 𝐿. For

example, 𝐿.𝑀 means accessing the local context𝑀 in the tuple 𝐿.

3.3 Semantics
The execution semantics for a Koord program captures the separation of the platform-independent

distributed program behaviors and the platform-specific controller behaviors (the program and

environment transitions) of the robots through rewrite rules. Rewrite rules at various levels: System,

Robot, and Expression are used to specify the semantics of a Koord program, and they provide the

mathematical basis for creating a framework for formal analysis.

System semantics. For system-level semantics, the rewrite rule is a mapping from a given system

configuration to a set of possible next configurations. It has the type

→𝐺 ⊆ C ↦→ ℘(C),
where ℘(𝑋) denotes the powerset of a set 𝑋 .

The bookkeeping variable turn is used by the system to determine whether the system (all

robots in the system) is performing a program transition, or an environment transition. The system

executes an environment transition only when the local turn of each robot is env. After all robots
enter the env turn, rule EndProgTrans sets the global turn from prog to env indicating the end of

program transition, and an environment transition will occur afterwards.

Rule EnvTrans shows the evolution of the system configuration after the rule EndProgTrans

is applied. This rule synchronizes the environment transitions of the robots and advances the global
time from 𝜏 to 𝜏 + 𝛿 where 𝛿 is the duration of each round. During a program transition, each robot

executes a sequence of statements, or rewrite rules for statement semantics of type

→stmt⊆ (S × L × (Stmt ∪ {⊕, ·})) ↦→ ℘(S × L × Stmt ∪ {·}),
where Stmt refers to the set of all possible statements allowed by Koord syntax. We use internal

syntactic structures ‘⊕’ and ‘·’, which are are not in Koord themselves, but are used to represent

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article . Publication date: November 2020.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Koord 9

∀𝑖 ∈ ID, 𝐿𝑖 .turn = env

({𝐿𝑖 }𝑖∈ID, 𝑆, 𝜏, prog) →𝐺 ({𝐿𝑖 }𝑖∈ID, 𝑆, 𝜏, env)
EndProgTrans

∀𝑖 ∈ ID, 𝐿𝑖 .turn = env ∧ ⟨𝑆, 𝐿𝑖 ⟩ →env ⟨𝑆, 𝐿′𝑖 ⟩ ∧ 𝐿′𝑖 .turn = prog

({𝐿𝑖 }𝑖∈ID, 𝑆, 𝜏, env) →𝐺 ({𝐿′𝑖 }𝑖∈ID, 𝑆, 𝜏 + 𝛿, prog)
EnvTrans

∃𝑖 ∈ ID, 𝐿𝑖 .turn = prog ∧ ⟨𝑆, 𝐿𝑖 , ⊕⟩ →stmt ⟨𝑆 ′, 𝐿′𝑖 , ·⟩ ∧ 𝐿′𝑖 .turn = env

({𝐿𝑖 }𝑖∈ID, 𝑆, 𝜏, prog) →𝐺 ({𝐿′𝑖 }𝑖∈ID, 𝑆
′, 𝜏, prog)

EventTrans

Fig. 5. System semantic rules for Koord .

control flow in Koord programs in the semantics, as we will see in the discussion on per-robot

semantics. ‘⊕’ is to denote nondeterministic selection of events, and ‘·’ is to indicate an “empty"

statement.

The→stmt relation takes as input a tuple of (1) a global context, (2) a robot configuration, and

(3) a statement, and maps it to a set of tuples of same three types of elements. Rule EventTrans

expresses that starting from a system configuration 𝒄 = ({𝐿𝑖 }𝑖∈ID, 𝑆, 𝜏, prog), a robot 𝑖 with the

configuration 𝐿𝑖 starts by selecting an enabled event, executes the event via a sequence of→stmt
rewrites, and sets its own turn to env at the end of the event execution. The system goes from

a configuration 𝒄 to 𝒄 ′ = ({𝐿′
𝑖 }𝑖∈ID, 𝑆 ′, 𝜏, prog), with possibly different robot configurations and

global context depending on whether any statement executed resulted in writes to shared variables.

In the premise of Rule EventTrans, the existential quantification denotes that any robot in prog
turn (𝐿𝑖 .turn = prog) may select and execute an event, and then enters env turn (𝐿′

𝑖 .turn = prog)
when finished. The system thus displays nondeterministic behaviors due to different execution

orders of robots still in prog turn.

We now go into some detail to discuss the →stmt rewrites which specify the behavior of each

robot during a program transition. These rules are used to update individual robot configurations.

𝐿.turn = prog ∧ “Name: pre: Cond eff: Body” ∈ Events ∧ ⟦Cond⟧S,L
⟨𝑆, 𝐿, ⊕⟩ →stmt ⟨𝑆, 𝐿, Body⟩

SelectEvent

⟨𝑆, 𝐿, ⊕⟩ →stmt ⟨𝑆, 𝐿, ·⟩ SkipEvent ⟨𝑆, (𝑀, cp, prog), ·⟩ →stmt ⟨𝑆, (𝑀, cp, env), ·⟩ EndEvent

∀𝑥 ∈ Keys(𝑆), 𝑀 ′ = 𝑀 [𝑥 ↦→ 𝑆 [𝑥]] ∧ cp′ = f (cp, 𝛿)
⟨𝑆, (𝑀,𝑐𝑝, env)⟩ →env ⟨𝑆, (𝑀 ′, 𝑐𝑝 ′, prog)⟩

RobotEnv

Fig. 6. Partial per robot semantic rules for Koord .

Robot semantics. Events are the main computational blocks in a Koord program. We present

the core semantic rules for event execution by a robot running a Koord program. In Figure 6,

Rule SelectEvent shows that any event may be executed when the precondition𝐶𝑜𝑛𝑑 is evaluated

to true, and by replacing ⊕ with the event effect Body, it ensures only one event is selected and

executed. The event effect is then executed following the semantics of each statement in Body.
Rule SkipEvent allows the robot to skip the event completely. At the end of the event, the sequence

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article . Publication date: November 2020.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Ritwika Ghosh, Chiao Hsieh, Sasa Misailovic, and Sayan Mitra

of statements becomes empty ‘·’. Rule EndEvent then makes sure the turn of the robot is set to

env indicating that an environment transition will occur afterwards.

While →stmt rewrites define each robot’s behavior during a program transition, we separate

the platform-dependent semantics of how each robot interacts with environment (including other

robots) using environment transition rules of the type

→env⊆ (S × L) ↦→ ℘(S × L),

which takes a global context and a robot configuration as input. Rule RobotEnv simply states

that the new local context 𝑀 ′
is the old local context 𝑀 updated with the global context 𝑆 ; thus

ensuring that all robots have consistent shared variable values before the next program transition.

To define the executable K semantics of Koord applications, we have to provide executable

descriptions for the environment transitions. The type of this executable object (𝑓) is defined

by CPorts, namely, 𝑓 : [CPorts ↦→ Val] × R≥0 ↦→ [CPorts ↦→ Val]. That is, given old sensor and

actuator values and a time point, 𝑓 should return the new values for all sensor and actual ports.

New sensor readings cp′ are then obtained by evaluating the black-box dynamics 𝑓 with time 𝛿 .

In an actual execution, the controller would run the program on hardware, whose sensor ports

evolve for 𝛿 time between program transitions. Finally, the turn of the robot is set back to prog.
This formalization allows arbitrary value changes of ports over 𝛿-transitions, and is sufficient for

modeling any black-box platform-specific controller.It further simplifies the verification procedure

in Section 4 that to analyze different platform-specific controllers is to simply consider different

additional assumptions over 𝑓 for the 𝛿 period.

⟨𝑆, 𝐿, 𝑆𝑡⟩ →stmt ⟨𝑆 ′, 𝐿′, 𝑆𝑡 ′⟩
⟨𝑆, 𝐿, 𝑆𝑡 𝑆𝑡𝐿𝑖𝑠𝑡⟩ →stmt ⟨𝑆 ′, 𝐿′, 𝑆𝑡 ′ 𝑆𝑡𝐿𝑖𝑠𝑡⟩

StmtSeq1

⟨𝑆, 𝐿, · 𝑆𝑡𝐿𝑖𝑠𝑡⟩ →stmt ⟨𝑆, 𝐿, 𝑆𝑡𝐿𝑖𝑠𝑡⟩ StmtSeq2

𝑥 ∈ Keys(𝑆) ∧ 𝑥 ∈ Keys(𝐿.𝑀) ∧ 𝐿′.𝑀 = 𝐿.𝑀 [𝑥 ↦→ 𝑣]
⟨𝑆, 𝐿, 𝑥 = 𝑣⟩→stmt ⟨𝑆 [𝑥 ↦→ 𝑣], 𝐿′, ·⟩

SvarAssign

𝑥 ∉ Keys(𝑆) ∧ 𝑥 ∈ Keys(𝐿.𝑀) ∧ 𝐿′.𝑀 = 𝐿.𝑀 [𝑥 ↦→ 𝑣]
⟨𝑆, 𝐿, 𝑥 = 𝑣⟩→stmt ⟨𝑆, 𝐿′, ·⟩

LvarAssign

Fig. 7. Example statement level semantic rules for Koord .

Aside from such rules, during program transitions,Koord semantics include rewrite rules showing

the impact of the shared memory abstractions on the configurations of each of the robot, control

flow, etc. We illustrate a few of these rules in Figure 7. Rule StmtSeq1 and StmtSeq2 show how a

statement representing a sequence of statements is executed. Rule LvarAssign and Rule SvarAssign

show the semantic rules for local and shared variable assignment respectively are also examples of

statement level rules. Evaluating these rules requires expression-level rules, which include variable

lookup, arithmetic, logical, and relational operations amongst others. We present a few illustrative

examples below.

Expression-level Semantics. The expression level semantics is given by rewrite rules of the type

→𝐸 ⊆ (S × L × E) × (S × L × E),

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article . Publication date: November 2020.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Koord 11

where S is the set of all possible global contexts, L refers to the set of all possible values for

configurations of an robot, and E refers to the set of all possible expressions allowed by the Koord
language syntax.

The variable lookup rule Var-Lookup-Rule states that every robot has a local copy of every

variable in the program, and if an robot is evaluating an expression involving variable 𝑥 , it will

replace 𝑥 with the current value 𝑣 from the local context 𝑀 . 𝑀 [𝑥] here obtains the value corre-
sponding to the key 𝑥 . We also present the rules for addition (Add-rule). They are fairly standard:

the execution first evaluates the left subexpression, then the right subexpression given that left is

already evaluated to a value and finally adding the two values. We omit the similar rules for other

arithmetic, logical, and relational operations.

𝐿.𝑀 [𝑥] = 𝑣

⟨𝑆, 𝐿, 𝑥⟩ →𝐸 ⟨𝑆, 𝐿, 𝑣⟩
Var-Lookup-rule

𝐸1 →𝐸 𝐸 ′
1

⟨𝑆, 𝐿, 𝐸1 + 𝐸2⟩ →𝐸 ⟨𝑆, 𝐿, 𝐸 ′
1
+ 𝐸2⟩

Add-rule-1

𝐸1 ∈ Val ∧ 𝐸2 →𝐸 𝐸 ′
2

⟨𝑆, 𝐿, 𝐸1 + 𝐸2⟩ →𝐸 ⟨𝑆, 𝐿, 𝐸1 + 𝐸 ′
2
⟩
Add-rule-1

𝐸1 ∈ Val ∧ 𝑣1 + 𝑣2 →𝐸 𝑣3

⟨𝑆, 𝐿, 𝑣1 + 𝑣2⟩ →𝐸 ⟨𝑆, 𝐿, 𝑣3⟩
Add-rule-2

Fig. 8. Partial expression semantic rules for Koord .

The semantic rules we discussed realize the distributed nature of the design of the Koord system.

The memory consistency model, and the synchronization model of Koord have been designed to

complement the separation and analysis of the platform-independent program transitions and

platform-dependent environment transitions.

3.4 Synchronization and consistency
Following our semantic rules in Section 3.3, careful readers would notice that all program transitions

of Koord program take zero time. The environment transitions however take 𝛿 time for the evolution

of the sensor and actuator ports together with the update of the local context from the global

context.

To reiterate, the following are the timing requirements from rule EventTrans and EnvTrans:

(a) a program transition takes zero time, (b) new values of controller ports are sampled at the end

of each round (c) shared variables should reach consistent values within 𝛿 time, and (d) a global

clock is used to synchronize each 𝛿-time round. The first two requirements are achievable if the

time taken to complete a program transition is negligible compared to 𝛿 , and 𝛿 can be a common

multiple of the sampling intervals of all controller ports in use. These constraints are reasonable

when computation and communication is comparatively much faster. Using the Motion module as

an example, our position sensor on each device publishes every 0.01 sec (100Hz) while the CPU on

each drone is 1.4 GHz. If we set 𝛿 to be 0.01 sec, a program transition taking 10K CPU cycles is still

less than 0.1% of 𝛿 .

Requirement (c) and (d) are well-known research topics in distributed computing with an ex-

tensive literature. A global clock can be achieved with existing techniques that synchronize all

local clocks on robots. The toolchain in [Ghosh et al. 2020] uses message passing to implement

distributed shared memory for shared variables. It requires that 𝛿 is always set to be larger than

the time taken to propagate values through messages and reach consistency and as a consequence,

the update is visible in the next round of program transitions for all robots. We therefore conclude

our round based semantic with shared memory is a reasonable abstraction.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article . Publication date: November 2020.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Ritwika Ghosh, Chiao Hsieh, Sasa Misailovic, and Sayan Mitra

4 VERIFYING KOORD PROGRAMS
We have built the semantics of Koord in the K framework to enable decoupled analyses of platform-

independent distributed program logic and the platform-dependent controllers of DRAs. The events
in an Koord program define the distributed program logic in the system. The effect of a robot

𝑖 executing event 𝑒 ∈ Events on a configuration 𝒄 ∈ C, can be seen as a →stmt application to

⟨𝒄 .𝑆, 𝒄 .𝐿𝑖 , Body⟩, where 𝑒 is “eventName: pre: Cond eff: Body”.

4.1 Reachable configurations
Given a set of system configurations C, we define the following sets using the semantic rules of

Section 3.3 and present their formal definitions in Figure 9:

(i) Post (C, 𝑖, 𝑒) returns the set of configurations obtained by robot 𝑖 executing event 𝑒 ∈ Events
from a configuration in C.

(ii) Post (C, 𝑖) returns the set of configurations obtained by robot 𝑖 executing any event from a

configuration in C.
(iii) Post (C, ®𝑝) returns all configurations visited, when robots execute their events in the order ®𝑝 ,

where ®𝑝 is a sequence of 𝑝𝑖 ∈ ID.
(iv) Post (C) is the union of Post (C, ®𝑝) over all orders ®𝑝 .
(v) End (C) is the set of configurations reached from C after a program transition.

All these definitions can be restricted naturally to individual configurations.

Post (C, 𝑖, 𝑒) := {𝒄 ′ | ∃𝒄 ∈ C, ⟦Cond⟧𝒄 .𝑆,𝒄 .𝐿𝑖 ∧ ⟨𝒄 .𝑆, 𝒄 .𝐿𝑖 , Body⟩ →stmt
〈
𝒄 ′.𝑆, 𝒄 ′.𝐿𝑖 , ·

〉
},

Post (C, 𝑖) :=
⋃

𝑒∈Events
Post (C, 𝑖, 𝑒),

Post (C, ®𝑝) :=
{
∅, if ®𝑝 = ()
Post (Post (C, 𝑝0), ®𝑝 ′), if ®𝑝 = (𝑝0, ®𝑝 ′)

Post (C) :=
⋃

®𝑝∈perms (ID)
Post (C, ®𝑝),

End (C) := {𝒄 | 𝒄 ∈ Post (C) ∧ ∀𝑖 ∈ ID, 𝒄 .𝐿𝑖 .turn ≠ prog} .

Fig. 9. Intermediate definitions for defining reachable configurations.

In Figure 9, a sequence ®𝑝 = (𝑝0, ®𝑝 ′), is written as a concatenation of the first element 𝑝0 and the

suffix ®𝑝 ′
, and perms(ID) refers to the set of permutations of ID. Also, ⟦Cond⟧𝒄 .𝑆,𝒄 .𝐿𝑖 refers to the

evaluation of Cond on 𝒄 .𝑆 and 𝒄 .𝐿𝑖 .
Next, we identify configurations that the system reaches during and after an environment

transition. Recall that environment transitions capture the evolution of the sensor and actuator

ports over a time interval [0, 𝛿]; all other parts of the configuration remain unchanged. Our Koord
semantics defines the environment transitions with an executable object which is possibly a black-

box function that captures the dynamics of individual robots.
1

Given such a function 𝑓𝑖 for each robot 𝑖 , we define the function traj : C× [0, 𝛿] ↦→ C to represent

the evolution of the system over a [0, 𝛿] time interval. The function traj is constructed by updating

1
For different platforms, this function could be defined in closed form, as solutions of differential equations, or in terms of a

numerical simulator.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article . Publication date: November 2020.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Koord 13

all controller ports cp of each robot 𝑖 using the function 𝑓𝑖 that captures their respective dynamics.

That is,

𝒄 ′ = traj(𝒄, 𝑡) ⇔
(
∀𝑖 ∈ ID, 𝒄 ′.𝐿𝑖 .cp = 𝑓𝑖 (𝒄 .𝐿𝑖 .cp, 𝑡) ∧ 𝒄 ′.𝐿𝑖 .𝑀 = 𝒄 .𝐿𝑖 .𝑀
∧ 𝒄 ′.𝐿𝑖 .turn = 𝒄 .𝐿𝑖 .turn ∧ 𝒄 ′.𝑆 = 𝒄 .𝑆 ∧ 𝒄 ′.𝜏 = 𝒄 .𝜏 ∧ 𝒄 ′.turn = 𝒄 .turn

)
(1)

Notice that there are additional constraints denoting that all other fields of 𝒄 and 𝒄 ′ stay the same.

The set of all transient system configurations C[0,𝑡] reached in an interval [0, 𝑡] from C is defined

as follows:

C[0,𝑡] := {𝒄 ′ | ∃𝜏 ∈ [0, 𝑡], ∃𝒄 ∈ C, 𝒄 ′ = traj(𝒄, 𝜏)} . (2)

We denote the set of points reached precisely at the end of an environment transition from C as Cenv.

Cenv := {𝒄 ′ | ∃𝒄 ∈ C, 𝒄 ′ = traj(𝒄, 𝛿)}where 𝛿 is the time for a round. (3)

Now, to conform to our semantics, we carefully define the exact set of configurations reached

right at the end of each round without transient configurations. A frontier set of configurations
C𝑛 represents those configurations that are reached from C when 𝑛 rounds have been completed.

Formally,

C𝑛 :=

{
C, if 𝑛 = 0

(End (C𝑛−1))env otherwise

(4)

Finally, given a set of configurations C ⊆ C, we can inductively define the set of all reachable

configurations in 𝑛 rounds:

Reach(C, 𝑛) :=
{
C, if 𝑛 = 0

Reach(C, 𝑛 − 1) ∪ Post (C𝑛−1) ∪ (End (C𝑛−1))[0,𝛿], otherwise

(5)

Notice that Reach includes the transient configurations reached during both program and environ-

ment transitions.

4.2 Decomposing invariance verification
Properties of Koord programs are specified in terms of boolean-valued expression called predicates
specified using the syntax below:

Pred ::=
∧
𝑖∈Nsys

BExpr𝑖 ,

where BExpr𝑖 is the non-terminal BExpr defined in the Koord syntax shown in Figure 4 with every

local variable and port parameterized by 𝑖 , the robot pid. A local variable or port 𝑝 parameterized

by pid 𝑖 is represented as 𝑝𝑖 .

Given a predicate inv, ⟦inv⟧C represents the evaluation of inv over each configuration in C. We

use the notation ⟦inv⟧𝒄 for evaluating inv over a single configuration 𝒄 as well. An invariant of
a Koord program is a predicate that holds in all reachable configurations. Invariants can express

safety requirements for an application, for instance, that no two robots are ever too close (Collision

avoidance), or that robots always stay within a designated area (Geofencing).

Definition 1. Given a set of initial configurations of the system C0, a predicate (Boolean valued
function) inv over configurations is an invariant of the system if ∀𝑛 ∈ N,∀𝑐 ∈ Reach(C0, 𝑛), ⟦inv⟧𝑐 .

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article . Publication date: November 2020.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Ritwika Ghosh, Chiao Hsieh, Sasa Misailovic, and Sayan Mitra

Definition 2. A predicate inv is an inductive invariant of the system if given a set of initial
configurations of the system C0, the following proof obligations (POs) hold:

⟦inv⟧C0 (6)

⟦inv⟧C ⇒ ∀𝑐 ∈ Reach(C, 1), ⟦inv⟧𝑐 (7)

That is, inv holds in the initial configuration(s) (PO (6)), and inv is preserved by both platform-

independent program transitions (distributed program logic) and the platform-dependent environ-

ment transitions (controllers), according to PO (7). It is straightforward to prove that an inductive

invariant is an invariant of the system.

Our verification strategy for user-specified (inductive) invariants is to discharge the proof

obligations. PO (6) is usually trivial. Therefore, we focus on PO (7). Koord semantic rules shown

in Figures 6 and 5 enable us to decouple the environment and program transitions in Reach, and
analyze each separately. PO (7) can be restated as

⟦inv⟧C ⇒ ⟦inv⟧Post (C) (8)

⟦inv⟧C ⇒ ⟦inv⟧End (C)[0,𝛿] (9)

4.3 Proof Obligations for Inductive Invariants
As in other concurrent systems, a major bottleneck in computing Post (C) for PO (8) is the required

enumeration of all ®𝑝 ∈ perms(ID) permutations for all robots with reads/writes to the global

memory. We, therefore, seek a stronger and easier to prove proof obligation using the lemma below:

Lemma 1. Given a predicate 𝜑 and a configuration 𝑐 , if ⟦𝜑⟧𝑐 ⇒
∧
𝑖∈ID

∧
𝑒∈Events⟦𝜑⟧Post (𝑐,𝑖,𝑒) , then:

⟦𝜑⟧𝑐 ⇒ ⟦𝜑⟧Post (𝑐)

Proof. Suppose the robots execute their events in the order ®𝑝 = 𝑝1, 𝑝2, . . . 𝑝Nsys . From its definition

in Figure 9, Post (𝑐, ®𝑝) = Post ((Post (𝑐, 𝑝1), (𝑝2, . . . , 𝑝Nsys)), since ®𝑝 is not an empty sequence. Since

⟦𝜑⟧𝑐 ⇒
∧
𝑖∈ID

∧
𝑒∈Events⟦𝜑⟧Post (𝑐,𝑖,𝑒) , ∧

𝑒∈Events
⟦𝜑⟧Post (𝑐,𝑝1,𝑒) (10)

Using (10) and the definition of Post (𝑐, 𝑝1), we get that ⟦𝜑⟧Post (𝑐,𝑝1) . A similar argument can be used

to derive that ⟦𝜑⟧Post (𝑐,𝑝𝑖) for any 𝑝𝑖 ∈ ®𝑝 . Since ⟦𝜑⟧Post (𝑐,𝑝1) , it follows that ⟦𝜑⟧Post (𝑐′,𝑝2) , where
𝑐 ′ ∈ Post (𝑐, 𝑝1). In fact, for robots with pids 𝑝𝑖 , 𝑝𝑖+1 in ®𝑝 executing their events consecutively from

a configuration 𝑐 , we have

⟦𝜑⟧Post (𝑐,𝑝𝑖) ⇒ ⟦𝜑⟧Post (Post (𝑐,𝑝𝑖),𝑝𝑖+1) (11)

Given (11) and the definition of Post (𝑐, ®𝑝), we can conclude that:

⟦𝜑⟧𝑐 ⇒ ⟦𝜑⟧Post (𝑐,®𝑝) (12)

Further, since we proved (12) for an arbitrary permutation ®𝑝 , we can conclude that (12) holds for

every permutation, i.e ,

∧
®𝑝∈perms (ID)⟦𝜑⟧Post (𝑐,®𝑝) . Hence, ⟦𝜑⟧𝑐 ⇒ ⟦𝜑⟧Post (𝑐) . □

Lemma 1 states that as 𝜑 is preserved by every event execution by every robot, the order of

robot event execution does not impact the validity of 𝜑 . With Lemma 1, we strengthen and rewrite

PO (8) as

⟦inv⟧C ⇒
∧
𝑖∈ID

∧
𝑒∈Events

⟦inv⟧Post (C,𝑖,𝑒) (13)

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article . Publication date: November 2020.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Koord 15

which no longer requires enumeration of all permutations. We use this lemma for scalable verifica-

tion of Koord applications in our synchronous round-based model of execution.

We now discuss our approach to discharge PO (9). To further decouple program and environment

transitions, we rewrite PO (9) by expanding ⟦inv⟧(End (C))[0,𝛿] and derive:

⟦inv⟧C ⇒ (∀𝒄 ′, 𝒄 ′′,∀𝑡 ∈ [0, 𝛿], 𝒄 ′ ∈ End (C) ∧ 𝒄 ′′ = traj(𝒄 ′, 𝑡) ⇒ ⟦inv⟧𝒄′′). (14)

PO (14) requires reasoning about the continuous behavior of traj during environment transitions,

and it is a challenging research problem by itself. We introduce controller assumption to abstract

away the continuous behavior of traj.

Definition 3. A controller assumption is a pair of predicates ⟨𝑃,𝑄⟩, where 𝑃 is defined over
CPorts × Val × CPorts × Val and 𝑄 is over CPorts × Val. Given a controller assumption ⟨𝑃,𝑄⟩, the
traj function satisfies the assumption if starting from any 𝒄 ′ with port values satisfying 𝑃 then any
reachable configuration 𝒄 ′′ within [0, 𝛿] also satisfies 𝑄 . Formally,

∀𝒄 ′, 𝒄 ′′,∀𝑡 ∈ [0, 𝛿], 𝑃 (𝒄 ′.Acts, 𝒄 ′.Sens) ∧ 𝒄 ′′ = traj(𝒄 ′, 𝑡) ⇒ 𝑄 (𝒄 ′′.Sens) (AAsm)

where 𝒄 ′.Acts refers to its actuator port values, 𝒄 ′.Sens refers to the sensor port values. A controller

assumption ⟨𝑃,𝑄⟩ is similar to preconditions and postconditions for the traj function with an

additional guarantee that 𝑄 must hold at all time during the time horizon [0, 𝛿]. It allows users to
over-approximate the set of all transient configurations reached by traj and prove the invariant.

We demonstrate in Section 5 and Section 6 how controller assumptions can be validated with

specialized tools for continuous dynamics.

We know by definition End (C) ⊆ Post (C). With Lemma 1, we can merge PO (13) and PO (14),

add program and controller assumptions, and simplify our proof obligation as:∧
𝑖∈ID

∧
𝑒∈Events

⟦inv⟧C ∧ 𝒄 ′ ∈ Post (C, 𝑖, 𝑒) ∧ (𝑃 (𝒄 ′.Acts, 𝒄 ′.Sens) ⇒ 𝑄 (𝒄 ′′.Sens)) ⇒ ⟦inv⟧𝒄′′ . (Ind)

Notice the continuous dynamics no longer appear in PO (Ind), allowing us to reason in per event

fashion as well as per robot fashion. We can then use our K symbolic execution semantics to

construct the symbolic post event configurations Post (C, 𝑖, 𝑒) for each event 𝑒 , and prove the

validity with SMT solvers.

Dealing with loops and external functions. Koord programs may include for loops with bounded

iterations. Proving invariants over loops is by itself a well studied and difficult research problem. In

this work we deal with loops by simply unrolling them. Koord programs can also include external

functions such as computing distance between two points, and path generated by path planners (as

shown in Section 6). To deal with such functions, we instruct our symbolic execution to treat them

as uninterpreted functions, and we introduce a function summary for these uninterpreted functions

similar to controller assumptions.

Definition 4. A function summary 𝐹 (𝑥,𝑦) for an uninterpreted function 𝑓 (𝑥) is a predicate for
which the following holds:

∀𝑥, 𝐹 (𝑥, 𝑓 (𝑥)) (FSum)

where 𝑥 can be extended according to the arity of 𝑓 . Verification and generation of good function

summaries is extensively discussed and widely used in software verification [Dillig et al. 2011; Yorsh

et al. 2008]. We believe writing a good function summary requires substantial domain knowledge

in both the particular robot devices and the problem to be solved. We present an example of writing

a function summary in Section 6.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article . Publication date: November 2020.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Ritwika Ghosh, Chiao Hsieh, Sasa Misailovic, and Sayan Mitra

5 CASE STUDY: DISTRIBUTED FORMATION CONTROL
In this section, we revisit the LineForm program of Section 2 and discuss how our approach towards

verifying inductive invariants can be applied to verify the Geofencing requirement of this program.

As mentioned in Section 4, the symbolic post event configuration Post (C, 𝑖, 𝑒) generated by

K represents a set of system configurations. For variables in 𝒄 , their primed copies, and their double

primed copies represent the variables in 𝒄 ′ ∈ Post (C), and 𝒄 ′′ ∈ End (C)[0,𝛿] respectively. Consider
a candidate invariant for the 𝑖th robot:

Invariant 2. ⟦𝐼𝑖⟧𝒄 := Motion.psn𝑖 ∈ rect (a, b) ∧ 𝑥 [𝑖] ∈ rect (a, b)

This invariant asserts that the position of each robot 𝑖 is always within rect (a, b), and that each

agent always updates its shared variable value to be within rect (a, b) as well. The expression

Motion.psn𝑖 ∈ rect (a, b) is actually a syntactic simplification for

𝑎.𝑥 ≤ Motion.psn𝑖 .𝑥 ≤ 𝑏.𝑥 ∧ 𝑎.𝑦 ≤ Motion.psn𝑖 .𝑦 ≤ 𝑏.𝑦 ∧ 𝑎.𝑧 ≤ Motion.psn𝑖 .𝑧 ≤ 𝑏.𝑧.

We first try to prove Invariant 2 without any assumptions, only from the constraints generated

through the symbolic execution of LineForm. Koord Prover symbolically executes the event Targe-
tUpdate (for robot 𝑖) and automatically generates the constraint 𝐸𝑖 specifying the symbolic post

event configuration:

𝐸𝑖 :=
©­«

¬(𝑖 = Nsys − 1 ∨ 𝑖 = 0)
∧ Motion.target′

𝑖
= (𝑥 [𝑖 − 1] + 𝑥 [𝑖 + 1])/2 ∧ 𝑥 ′[𝑖] = Motion.psn𝑖

∧ u_vars ∧ Motion.psn′′
𝑖
:= traj(Motion.psn′

𝑖
, Motion.target𝑖 , 𝑡) ∧ 𝑡 ∈ [0, 𝛿]

ª®¬
where traj is treated as an uninterpreted function over R × R. The function rect can both be

precisely defined as well as left uninterpreted. The primed copies of the variables in 𝒄 are their
values in 𝒄 ′, and the double primed copies are their values in 𝒄 ′′. The rest of the formula includes

a subformula u_vars that ensures that the values of unmodified variables are unchanged such as

Motion.psn′𝑖 = Motion.psn𝑖 and 𝑥
′[𝑗] = 𝑥 [𝑗] for 𝑗 ≠ 𝑖 .

Since there is only one event, the induction proof obligation, Koord Prover generates the following
proof obligation PO (1) for LineForm:

Proof Obligation 1.

∧
𝑖∈ID

⟦𝐼𝑖⟧𝒄 ∧ 𝐸𝑖 ⇒ ⟦𝐼𝑖⟧𝒄′′

The Prover returns that the negation of PO (1) is satisfiable, meaning that our proposed invariant

is not inductive. The satisfying assignment serves as a counter example. This is not surprising

as the automatically generated proof obligation PO (1) does not include any sensor or actuator

assumptions. Specifically, it does not contain any restrictions on Motion.psn′′𝑖 , Motion.target
′′
𝑖

w.r.t any of the variables in the symbolic post event configuration.

Next, we introduce a controller assumption ⟨𝑃𝑖 , 𝑄𝑖⟩
𝑃𝑖 := Motion.psn′𝑖 ∈ rect (a, b) ∧ Motion.target′𝑖 ∈ rect (a, b)
𝑄𝑖 := Motion.psn′′𝑖 ∈ rect (a, b), (15)

where 𝑐 ′ is the configuration 𝑃𝑖 is evaluated on, and 𝑐 ′′ is the configuration 𝑄𝑖 is evaluated on.

PO (1) is then refined to:

Proof Obligation 2.

∧
𝑖∈ID

⟦𝐼𝑖⟧𝒄 ∧ 𝐸𝑖 ∧ (𝑃𝑖 ⇒ 𝑄𝑖) ⇒ ⟦𝐼𝑖⟧𝒄′′

Having added the controller assumption (15), Koord Prover returns that the negation of PO (2) is

unsatisfiable, i.e., (15) is sufficient to prove Invariant 2.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article . Publication date: November 2020.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Koord 17

Table 1 summarizes the verification time needed for checking PO (1) on instances of LineForm
with different Nsys . We see that the time taken for symbolic execution in K (𝑇𝐾) remains relatively

stable. While the time taken to encode the problem in SMT and discharge the proof obligation (𝑇𝑉)

increases, it still completes in order of seconds even when the number of robots increases up to 15.

Table 1. Summary of semantics based verification for LineForm. 𝑇𝐾 is the symbolic post event configuration
computation time in K , 𝑇𝑉 is the time taken for construction of constraints and verification in Z3. A system
of robots moving along a line is represented by dim = 1, on a plane by dim = 2, and in 3D space by dim = 3.

Nsys dim𝑇𝐾 (s) 𝑇𝑉 (s) Valid
3 1 4.90 9.09 !

3 2 4.19 10.13 !

4 1 4.79 12.21 !

4 2 5.28 12.49 !

4 3 5.06 12.77 !

5 1 4.91 18.46 !

Nsys dim 𝑇𝐾 (s) 𝑇𝑉 (s) Valid
5 2 5.60 18.91 !

5 3 4.33 20.30 !

10 1 4.92 32.34 !

10 2 5.16 32.42 !

10 3 4.34 33.61 !

15 1 5.23 53.89 !

We now turn to validating the controller assumption (15). Recall, from PO (AAsm) and ⟨𝑃𝑖 , 𝑄𝑖⟩
above, we can derive the following:

Controller Proof Obligation 1.

∀𝑡 ∈ [0, 𝛿], Motion.psn𝑖 ∈ rect (a, b) ∧ Motion.target𝑖 ∈ rect (a, b)
∧ 𝑐 ′′ = traj(𝑐 ′, 𝑡) ⇒ Motion.psn′′𝑖 ∈ rect (a, b).

This proof obligation essentially states that if the current position and the target of the robot are

within the rectangle rect (a, b), then it remains within rect (a, b) for the next 𝛿 interval. To prove

CPO (1), one has to reason with the function traj that represents the control system of the specific

robot, and we believe such reasoning is better solved with reachability analysis.

Reachability analysis computes the set of states of a control system that is reachable from a

set of initial states. The sensor and actuator ports in Koord can be directly encoded as the state

variables of a (black-box) control system traj. Proving Controller Proof Obligation 1 boils down

to computing the set of reachable states from a set of initial positions bounded by rect (a, b) and
with the target also in the same rectangle, and checking that the result is contained in rect (a, b).
Typically, computing the exact set of reachable states is undecidable for nonlinear control system

models, and therefore, the available algorithms rely on over-approximations.

In this case study, we use the DryVR [Fan et al. 2017] reachability analysis tool which uses

numerical simulations to learn the sensitivity of the trajectories of the robot. Then, DryVR uses this

sensitivity and additional simulations to either prove the required property, with a probabilistic

guarantee, or finds a counter-example trace. DryVR has been used to analyze automotive and

aerospace control systems [Fan et al. 2018]. Here we use the Koord simulator to generate traces of

a drone, specifically using the Hector Quadrotor model [Meyer et al. 2012], from which DryVR

computes the reachsets (sets of reachable states).
Figure 10 shows the outputs of the reachability analysis performed on the model of the drone.

With a simple PID controller, the drone overshoots its target, and violates the Controller Proof

Obligation 1, while for the same controller with different control gains with a lower settling time,

it meets the requirement. Here we have computed reachsets from a smaller initial rectangle and

with a target that is also in a smaller rectangle, than rect (a, b). However, the model of the drone

is symmetric under translations, planar reflections and rotations. Therefore, using Theorem 10

from [Russo and Slotine 2011] and the computed reachsets can be translated and rotated to cover

all initial and target choices in rect (a, b) (as shown in [Sibai et al. 2020]).

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article . Publication date: November 2020.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Ritwika Ghosh, Chiao Hsieh, Sasa Misailovic, and Sayan Mitra

Fig. 10. Reachset computations for LineForm, for the drone model. The big green rectangle represents
rect (a, b). The blue rectangle at the bottom left corner of each plot represents starting points in the simulated
trajectories used to generate these reachtubes, and the blue rectangle on the top right corner is the bound on
the targets reached in the trajectories. Left shows that the reachset of the drone overshoots the rectangle.
Right shows that with different PID control parameters, the controller assumption is satisfied.

6 CASE STUDY: DISTRIBUTED DELIVERY
Many distributed multi-robot applications can be seen as distributed task allocation problems, with

different points in a shared environment that robots collaboratively visit. We view visiting points

as an abstraction for location-based objectives like package delivery, mapping, surveillance, or

fire-fighting. In this section, we discuss a Koord application Delivery, (shown in Figure 11) that

performs distributed delivery. We then show how our decomposed verification approach can verify

the safety requirements for this application.

The problem statement is as follows: Given a set of (possibly heterogeneous) robots, a safety

distance 𝜖 > 0, and a fixed sequence of delivery points (or tasks) all_tasks = 𝑥1, 𝑥2, . . . where every

𝑥𝑖 ∈ R3, there are following two requirements: (a) every unvisited 𝑥𝑖 in the sequence is visited
exactly by one robot and (b) no two robots ever get closer than 𝜖 .

A task is a described as a tuple, containing a Boolean which indicates whether it has been

assigned, an integer which is set to the identifier of the robot it has been assigned to, and a Point
which is the location of the task. To get to a task, a robot visits a list of points starting from its

current position to the task location (in order). We refer to this list of points as its path. The idea
behind the solution to the distributed delivery problem is simple: Robot 𝐴 looks for an unassigned

task 𝜏 from a list of tasks, all_tasks. If there is a clear path to 𝜏 , then 𝐴 assigns itself the task 𝜏 .

Then 𝐴 visits 𝜏 following the path; once done, it repeats. Converting this to a working solution for

a distributed system is challenging as it involves combining distributed mutual exclusion ([Ghosh

2014; Lynch 1996b]) to assign a task 𝜏 exclusively to a robot 𝐴 from all_tasks, dynamic conflict-free

path planning, and low-level motion control.

Figure 11 shows our Koord language implementation of Delivery. Delivery consists of two events
(1) Assign, in which each robot looks for an unassigned task from all_tasks. If there is a clear path
to the the task cur_task then the robot assigns itself the task, set the actuator port Motion.path,
and shares its path with all other robots through shared_paths. Otherwise, it shares its position
as the path. (2) Complete, which checks whether a robot has visited its assigned task.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article . Publication date: November 2020.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Koord 19

1 using Motion:

2 actuators:
3 List⟨Point⟩ path
4 sensors:
5 Point psn
6 bool reached
7 PathPlanner planner
8 local:
9 bool on_task = s

10 List⟨Point⟩ curr_path
11 Task cur_task
12

13 allread:
14 List⟨Point⟩ shared_paths[Nsys]
15 allwrite:
16 List⟨Task⟩ all_tasks
17

18 Complete:

19 pre: on_task and Motion.reached

20 eff: on_task=False
21 shared_paths[pid]=[Motion.psn]

22

23 Assign:

24 pre: !on_task
25 eff:
26 if len(all_tasks) == 0:

27 stop
28 else: atomic:
29 for t in all_tasks:

30 curr_path=Motion.planner(t.target)
31 if pathIsClear(shared_paths, \
32 curr_path, pid) :
33 on_task=True

34 cur_task=t

35 break
36 if on_task:
37 all_tasks.remove(cur_task)
38 shared_paths[pid]=curr_path
39 Motion.path=curr_path

40 else:
41 shared_paths[pid]=[Motion.psn]

Fig. 11. Koord code for distributed Delivery application.

The Motion module drives the robot along a path, as directed by the position value set at its

actuator port Motion.path. The sensor port Motion.planner returns a path to the target of an

unassigned task. A (user-defined) function called pathIsClear is used to determine whether the

currently planned path is within 𝜖 distance of any path in shared_paths. In this case study, we

omit the proof for requirement (a) for Delivery as it requires reasoning only on program variables,

and demonstrate our proof of requirement (b) which involves dealing with controller assumptions

and function summaries. The full proof is available in [Ghosh 2020].

Suppose there is a function parameterized by 𝜖 , taking two paths as input clear𝜖 : List⟨Point⟩ ×
List⟨Point⟩ ↦→ bool, it returns true only if the minimum distance between the two paths is greater

than 𝜖 . We restate requirement (b) as:

Invariant 3. ⟦𝐼𝑖⟧𝒄 = ∀𝑗 ∈ [Nsys], (𝑖 ≠ 𝑗∧clear𝜖 (shared_paths[𝑖], shared_paths[𝑗]))∨(𝑖 = 𝑗)
Computing the clear function involves nested loops over the length of each path, then computing

the minimum distance between each path segment pathIsClear further has to iterate over all

shared paths and check via clear . We use the notion of function summary as defined in Section 4

to capture the notion of correctness for for pathIsClear. The function summary PIC is defined

below as:

Function Summary 1. PIC (𝑠𝑝, 𝑐𝑝, 𝑖, 𝑦) := ∀𝑗 ∈ ID, 𝑗 ≠ 𝑖 ∧ ¬clear𝜌 (𝑠𝑝 [𝑗], 𝑐𝑝) ⇒ ¬𝑦,

where 𝜌 > 𝜖 . The function summary simply says, if my current path 𝑐𝑝 is not more than 𝜌 distance

to any path 𝑠𝑝 [𝑗] shared by other robots, the output 𝑦 = pathIsClear(sp, cp, 𝑖) should be false.
2

We derive this function summary from our understanding of the code in Figure 11. If the result

of pathIsClear evaluates to true at Line 31, the robot’s path curr_path should be at least some

𝜌 > 𝜖 distance away from all other robot paths in shared_paths. Therefore, we constructed the

function summary by contraposition that, if the path is not at least 𝜌 distance away from all other

paths, the output 𝑦 should evaluate to false. PO (FSum) now becomes:

Proof Obligation 3. ∀𝑠𝑝, 𝑐𝑝, 𝑖, PIC (𝑠𝑝, 𝑐𝑝, 𝑖, pathIsClear(𝑠𝑝, 𝑐𝑝, 𝑖))
2
The index 𝑖 in the pathIsClear function is for robot 𝑖 to avoid considering its own previous paths.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article . Publication date: November 2020.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Ritwika Ghosh, Chiao Hsieh, Sasa Misailovic, and Sayan Mitra

Validating PO (3) requires reasoning about the implementation of the pathIsClear function,

which is beyond the scope of this discussion.

For constructing the symbolic set of configurations, we use a list with four tasks signified by

{𝑡1, 𝑡2, 𝑡3, 𝑡4} so that the symbolic execution terminates. The for-loop iterating through the task list

is unrolled into a sequence of (nested) if-else statements. For simplicity, we show the automatically
generated symbolic post event configuration of the Assign event for only one execution when

robot 𝑖 picks 𝑡1:

𝐸
𝑡1
𝑖
:= ¬on_task𝑖 ∧ on_task′𝑖 ∧ curr_path′𝑖 = Motion.planner(𝑡1 .𝑡𝑎𝑟𝑔𝑒𝑡)
∧ PIC (shared_paths, curr_path′𝑖 , 𝑖, True) ∧ shared_paths′[𝑖] = curr_pathi

′

∧ Motion.path′𝑖 = shared_paths′[𝑖] ∧ u_vars

where u_vars again, ensures the values of unmodified variables are unchanged. Notice how we can

use PIC to summarize pathIsClear. Similarly, we get 𝐸
𝑡2
𝑖
, 𝐸

𝑡3
𝑖
and 𝐸

𝑡4
𝑖
for other execution paths

choosing corresponding tasks. When none of the tasks is picked, the post event configuration

generated is

𝐸𝑛𝑜𝑛𝑒𝑖 := ¬on_task𝑖 ∧ shared_paths′[𝑖] = [Motion.psn𝑖] ∧ u_vars

For the event Assign, the post event configuration is:

𝐸𝑖 :=

(
∀𝑗 ∈ [Nsys], 𝐸𝑡1𝑖 ∧ 𝐸

𝑡2
𝑖
∧ 𝐸

𝑡3
𝑖
∧ 𝐸

𝑡4
𝑖
∧ 𝐸none

𝑖
∧ (Motion.psn′′, Motion.reached′′) =

traj(Motion.psn′, Motion.reached′, Motion.path′, 𝑡) ∧ 𝑡 ∈ [0, 𝛿]

)
Our Prover then automatically generates the proof obligation :

Proof Obligation 4.

∧
𝑖∈ID

⟦𝐼𝑖⟧𝒄 ∧ 𝐸𝑖 ⇒ ⟦𝐼𝑖⟧𝒄′′

For abstracting the movement of robots, a robot should move closely (¬clear𝛽 , where 2𝛽 + 𝜖 ≤ 𝜌)

along its Motion.path actuator whose value is denoted by Motion.path until it finishes traversing

the path. We add ⟨𝑃𝑖 , 𝑄𝑖⟩ with
𝑃𝑖 := ¬Motion.reached′𝑖
𝑄𝑖 := ¬clear𝛽 (Motion.psn′′𝑖 , Motion.path′′𝑖)

The corresponding proof obligation then becomes:

Controller Proof Obligation 2.

∀𝑡 ∈ [0, 𝛿],¬Motion.reached′𝑖 ∧ 𝑐 ′′ = traj(𝑐 ′, 𝑡) ⇒ ¬clear𝛽 (Motion.psn′′𝑖 , Motion.path′′𝑖)

The induction hypothesis for event Complete is generated similarly (omitted here), and the

overall proof obligation is a conjunction of the two. Table 2 summarizes the verification of these

constraints with different number of robots.

Table 2. Summary of semantics based verification of requirement (b) for Delivery. 𝑇𝐾 is the symbolic post
event configuration computation time in K ,𝑇𝑉 is the time taken for generation of constraints and verification
in Z3, and Nsys is the number of robots in the system.

Benchmark Nsys 𝑇𝐾 (s) 𝑇𝑉 (s) Valid
Task 3 9.90 10.6 !

Task 4 9.79 11.78 !

Task 5 9.91 14.92 !

Task 10 12.92 18.34 !

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article . Publication date: November 2020.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Koord 21

Fig. 12. Reachset computations for Delivery. In both the plots, the grey shaded area is unsafe and needs to be
avoided. The blue path is the computed path, and the green lines indicate the bounds at 𝛽 distance from the
path. Left shows the computed reachset for the drone lies within 𝛽 of the actual path, thus the drone will not
violate Controller Proof Obligation 2.Right shows the computed reachset for the car model is not contained
so the car may violate the assumption.

We now turn towards DryVR based validation for Controller Proof Obligation 2. We computed

reachsets for our vehicle models and checked whether they were contained within 𝛽 distance

of the desired path. We found that the reachset of the drone satisfied this requirement, but the

car model did not, as seen in Figure 12 (Right). The car model [Karaman et al. 2017] we used

has non-holonomic constraints (constraints that constrain the velocities of particles but not their

positions) and making the turn formed by the two components of the path shown in Figure 12

requires the car to perform a reverse maneuver that may violate the safety constraint.

7 CASE STUDY: DISTRIBUTED MAPPING
We demonstrate how Koord port abstractions support versatile robotic functionality through a

distributed grid mapping application (Mapping). This problem requires a set of robots to collabora-

tively mark the position of static obstacles within a given area 𝐷 quantized by a grid, which any

robot should avoid while moving in 𝐷 . For simplicity, we assume that the robots are constrained to

move in a 2D space and use only LIDAR sensors for sensing obstacles.

TheMapping algorithm shown in Figure 13 works in the following manner. Each robot constructs

a local grid map over the area 𝐷 using sensors, and updates it using information from other robots

shared via a global grid map. InMapping, the MotionWithScan module provides a pscan sensor,
which is used to read the LIDAR scan of the actual robot. The other ports psn, reached, planner,
path have the same functionality as that in the Motion module. The shared allwrite variable map is

used to construct a shared map of obstacles within the domain 𝐷 , and has type GridMap, which is

a 2-D array representing a grid over 𝐷 . The local variable localMap represents each robot’s local
knowledge of the domain𝐷 , and has the same type as𝐷 . There are three events: NewPoint, LUpdate,
and GUpdate. A robot executing the NewPoint event, finds an unoccupied point to move to using a

user defined function pickFrontierPos and plans a path to it using MotionWithScan.planner. It
then updates its localMap from the shared variable map. The LUpdate event updates the localMap
with scanned sensor data while the robot is in motion, and the GUpdate event updates the shared

map with the updated localMap information corresponding to the scanned data.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article . Publication date: November 2020.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Ritwika Ghosh, Chiao Hsieh, Sasa Misailovic, and Sayan Mitra

1 using MotionWithScan

2 sensors:
3 Point psn
4 List⟨Point, Scan⟩ pscan
5 bool reached
6 PathPlanner planner
7 actuators:
8 List⟨Point⟩ path
9

10 allwrite:
11 GridMap map

12

13 #omitting initialization
14 local:
15 GridMap localMap

16 Point target
17 bool on_path = True

18 List⟨Grid⟩ obstacles
19

20 GUpdate:

21 pre MotionWithScan.reached

22 eff: atomic:
23 map = merge(map, localMap)
24 on_path = False

25

26 NewTarget:

27 pre !on_path
28 eff:
29 target = pickFrontierPos(map, MotionWithScan.position)
30 obstacles = findObs(map)
31 MotionWithScan.path = MotionWithScan.planner(target, obstacles)
32 if MotionWithScan.path != []:
33 on_path = True

34 else:
35 on_path = False

36 localMap = map

37

38 LUpdate:

39 pre on_path and !MotionWithScan.reached

40 eff:
41 for p, s in MotionWithScan.pscan:

42 localMap = merge(localMap, scanToMap(p, s))

Fig. 13. Koord code for Distributed Mapping Application

Fig. 14. Four cars with a U-shape world in the multi-robot simulator of [Ghosh et al. 2020] (Left). Visualization
of the global map at three different time instances (Right)

A correctness requirement for Mapping is that the detected grid map is consistent with the

ground truth. To express this requirement, we assume the ground truth for all obstacles is a predicate

world, such that world (®𝑥) is true if and only if the position ®𝑥 ∈ 𝐷 is occupied by obstacles. We also

define a quantized domain Q and a quantization function quant : 𝐷 ↦→ Q, which maps a point in 𝐷

to a grid square in Q. We then can express the consistency that, if a grid map 𝑔 marks a grid square

𝑞 ∈ Q occupied (𝑔(𝑞) = OCCUPIED, e.g., grid squares containing any part of the u-shaped obstacle

in Figure 14 (Left)), then there is indeed some obstacles in 𝑞. Formally, we define a function chk as:

chk(𝑔) := ∀𝑞 ∈ 𝑄, (𝑔(𝑞) = OCCUPIED) ⇒ (∃®𝑥 ∈ 𝐷,𝑞 = quant (®𝑥) ∧ world (®𝑥))
The function chk is treated as an uninterpreted function with the constraint mentioned above in

the proof of Mapping. We then formally define the invariant to check the consistency of both local

and shared maps as:

Invariant 4. ⟦Consistent𝑖⟧𝑐 := chk(localMap𝑖) ∧ chk(map)

We omit a detailed presentation of the specific proof obligations, controller assumptions and

function summaries for this case study. The full proof is available in Ghosh [2020]. Table 3 summa-

rizes the verification effort of Invariant 4 of the Mapping application on systems of different Nsys .

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article . Publication date: November 2020.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Koord 23

Table 3. Summary of semantics based verification for Mapping

Benchmark Nsys 𝑇𝐾 (s) 𝑇𝑉 (s) Valid
Mapping 3 9.23 14.53 !

Mapping 4 9.33 19.25 !

Mapping 5 9.19 24.30 !

Mapping 10 9.31 59.81 !

We also tested theMapping application using the multi-robot simulator from [Ghosh et al. 2020],

and the MIT RACECAR model [Karaman et al. 2017] included in the simulator. Figure 14 shows an

example of the stages of the collaborative map created by four robots of the U-shaped obstacle in

the simulation environment.

While tools such as ROS [Quigley et al. 2009] can be used to implement applications such

as these, without inherent support for distributed coordination, it becomes difficult to program

such applications even for experienced roboticists. Mapping implemented in Koord treats the

sensing of the obstacles in the environment separately from the collaborative map construction.

This is facilitated by the shared variable abstractions provided by Koord, which provides easy

integration with popular robotics platforms through platform specific implementations of controller

abstractions.

8 IMPLEMENTING KOORD: THE CYPHYHOUSE TOOLCHAIN

Per robot

Real or Simulated Vehicle

Platform-specific controller

Compiled Koord code

CyPhyHouse Middleware

Actuator
ROS topics

DSM
Sensor

ROS topics

Shared/Module/Local Variables

Real or Simulated World

Low level sensory & control

Fig. 15. Architecture of the CyPhyHouse toolchain and
the interactions between its components. Each com-
piled Koord program interacts with CyPhyHouse mid-
dleware simply via variables. The CyPhyHouse middle-
ware implements distributed shared memory (DSM)
across agents and the language abstractions over
platform-specific controllers through actuator ROS top-
ics, and obtain (real or simulated) information such as
vehicle positions through sensor ROS topics.

In this section, we discuss the implementation

of the execution engine for Koord language in

our CyPhyHouse3 toolchain [Ghosh et al. 2020].

Figure 15 shows the toolchain, which has the

following components:

• The Koord compiler, which accepts a Ko-
ord program as input and generates an exe-

cutable Python application denoted here as

the compiled Koord program,

• The CyPhyHouse middleware which inter-

faces each instance of the compiled Ko-
ord program with distributed shared mem-

ory (DSM) and platform-specific controllers,

• The platform-specific controller implemented

in ROS and deployed to the real vehicles,

• The multi-robot simulator, which provides

simulation worlds and simulated vehicle

models in Gazebo for testing and debug-

ging Koord applications.

CyPhyHouse middleware decouples compiled

Koord programs from the platform-specific

controllers and transitively all platform-dependent components. Next, we connect the Koord se-

mantics to the implemented middleware. We then describe the code generation by Koord compiler.

We use the Motion module in Section 5 as an example to describe how we provide a concrete

implementation of the port abstractions that wraps over the ROS-based platform-specific controllers.

3
https://cyphyhouse.github.io

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article . Publication date: November 2020.

https://cyphyhouse.github.io

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 Ritwika Ghosh, Chiao Hsieh, Sasa Misailovic, and Sayan Mitra

8.1 CyPhyHouse Middleware
The main design rationale behind the CyPhyHouse middleware is modularity, to enable several

replaceable implementations of the main language features, such as shared memory, mutual ex-

clusion, and round synchronization. General interfaces between the control logic and distributed

coordination in the middleware are used to support robots with various controller port abstractions.

This modular design enables the portability of Koord applications across heterogeneous robots.

The CyPhyHouse middleware is deployed to each robot to interface the compiled Koord pro-

grams with platform-specific controllers as well as communication through distributed shared

memory (DSM). More specifically, following the robot semantics in Section 3, the CyPhyHouse
middleware includes interfaces to (1) declare and update the robot configuration, which includes

local context and sensor and actuator ports, and (2) execute selected events in prog turn followed

by env turn in each round, which we discussed in Section 3.3.

1 def __init__(self , ...):

2 self.lvh = dict()

3 self.gvh = GlobalVariableHolder ()

4 self.motion = Motion(vehicle_type)

5 ... # S e t p id , N_sys , e t c .
6

7 def run(self):

8 self.init_vars ()

9 self.gvh.init_barrier.wait()

10

11 while not self.stopped ():

12 self.gvh.round_barrier.wait()

13 self.loop_body ()

14

15 # 𝛿 t ime f o r each i t e r a t i o n
16 DELTA_TIMER.sleep()

17 def init_vars(self):

18 self.gvh.create_ar_var('mypos ',

19 type(pos))

20

21 def loop_body(self):

22 if True: # p r e o f Ta r g e tUpda t e
23 # e f f o f Ta r g e tUpda t e
24 self.gvh['mypos '][self.pid] = \

25 self.motion.psn

26 if not (self.pid == 0 or \

27 self.pid == self.N_sys - 1):

28 self.motion.target = mid_pt(

29 self.gvh['mypos '][self.pid + 1],

30 self.gvh['mypos '][self.pid - 1])

31 return # end e f f o f Ta r g e tUpda t e

Fig. 16. Simplified Round-based Event Execution Loop (Left) and compiled Koord for LineForm in Fig-
ure 3 (Right).

RobotConfigurations. Recall the robot configuration in Section 3.2, local context 𝐿𝑖 .𝑀 contains

both local variables and local copies of shared variables. In Figure 16, our implementation in

CyPhyHouse middleware splits it into two mappings, lvh (Line 2) and gvh (Line 3), to keep track

of local and shared variables separately for the robot configuration. Such separation effectively

eliminates checking 𝑥 ∈ Keys(𝑆) (e.g., in semantic rules SvarAssign and LvarAssign). The abstract

base class named GlobalVariableHolder for gvh defines required methods including create, read,

and update variable values, and it allows plugging in different DSM algorithms.

Distributed Shared Memory. CyPhyHouse middleware further provides a baseline implemen-

tation of GlobalVariableHolder based on the central-server algorithm for DSM [Protic et al.

1997] with several modifications to follow the Koord semantic rules:

• Each agent maintains its local copy of 𝑆 .

• Following the rule Var-Lookup-rule in Figure 6, reading shared variables values is from this

local copy instead of the real global context 𝑆 .

• Following the rule SvarAssign, each call to the update method of gvh internally updates the

local copy and sends a message to the central server to update the global context 𝑆 .

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article . Publication date: November 2020.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Koord 25

• Following the rule RobotEnv, all agents read the latest 𝑆 from the central server to update their

local copies before entering the next round.

Note that the Koord semantics and this implementation do not permit causally related writes

within a single round because the global context is copied into each robot’s local context only at

the end of the environment transition, and the updated values of shared variables will be from the

last update messages received by the central server. Koord does allow causally related writes across

multiple rounds by using the atomic block construct to enforce mutual exclusion in a round. If an

event is annotated with atomic, then only one robot can execute this event in each round. This is

achieved in the implementation via a lock object for each event with atomic blocks.
Sensor and actuator port names are from predefined Python modules implementing platform-

specific controllers. For instance, psn and target attributes are predefined in Motion. Therefore,
there is no need for an extra variable mapping.

Round-based Event Execution Loop. Each compiledKoord program in Python is conceptually

an application thread which runs on each robot and executes a loop with each iteration representing

a round. The run function in Figure 16 shows the basic structure of this event execution loop.

Before the while loop, every agent executes its initialization function init_vars translated from

the variable declarations and init blocks in Koord. For example, an allread variable mypos is declared
in LineForm, and it is translated to a function call that creates a ‘mypos’ entry in gvh at Line 18.
The init_barrier object ensures that all agents finished their initialization before entering the

while loop. Inside the while loop, all agents are synchronized by the round_barrier object at

Line 12, and execute their loop_body. The loop body is translated from the distributed coordination

logic in the form of conditional blocks controlled through the events’ preconditions. For example,

Figure 16 show the translation of the TargetUpdate event in LineForm. After executing the event,

the timer ensures the agent does not enter the next round before the 𝛿 period.

We skip the details about barrier objects as barrier synchronization is a common technique in

multi-threading; it can be implemented through either shared memory [Hensgen et al. 1988] or

message passing [Shun Yan Cheung and Sunderam 1995]. System parameters such as pid, Nsys , the

set of participants ID, etc., are provided in a global configuration file and deployed with compiled

Koord program to each robot. The fact that robots are aware of the number and identities of all

participating robots does not limit the applicability of Koord in real deployments. In practice,

applications like warehouse management, delivery, agricultural surveillance are all being initially

designed for a fixed set of participants
4
.

8.2 Code Generation
TheKoord compiler generates Python code for theKoord application using the interfaces provided by
the CyPhyHouse middleware. The Koord compiler has three phases: (1) parsing and syntax checking,

(2) static type checking (recall, all variables and ports are statically typed), and (3) translation

to Python code. Note that the variable holders and event execution loop do not change across

different Koord programs. Koord compiler only has to generate the function body of init_var and

loop_body for a given Koord program.

8.3 Interface with Platform-specific Controllers
In this section, we use the Motion module to illustrate how writing and reading to module ports is

implemented via sending and receiving messages of ROS topics. For instance, the Motion module

in our case studies provides the sensor ports, psn and reached, and the actuator port, target, that

4
https://www.faa.gov/uas/research_development/traffic_management/media/UTM_ConOps_v2.pdf

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article . Publication date: November 2020.

https://www.faa.gov/uas/research_development/traffic_management/media/UTM_ConOps_v2.pdf

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

26 Ritwika Ghosh, Chiao Hsieh, Sasa Misailovic, and Sayan Mitra

abstract away real implementations. We simply use an abstract base class MotionAutomaton with

psn and target properties with setter and getter methods to represent these port abstractions. To

run Koord on different kinds of hardware platforms, we then need to implement setter and getter

methods of psn and target for each kind of platform.

In particular, we discuss two different implementations of target property for the two simulated

hardware platforms integrated into CyPhyHouse: the car from MIT RACECAR project [Karaman

et al. 2017] and the drone from the Hector Quadrotor project [Meyer et al. 2012]. To implement

the target property for assigning target waypoints, we have to consider the difference between

the physics and platform-specific control of car and drone, and publish to different ROS topics of

motion-related commands as messages. More specifically, the car has non-holonomic constraints

in steering as we mentioned in Section 6, and hence the maximum angle of turning is limited.

Therefore, setting a new target value internally requires a path planner to generate a path to the

new target with reasonable curvatures, and publishes a sequence of steering messages to follow

the path. In contrast, the drone in [Meyer et al. 2012] has no such constraint. The provided velocity

message can drive the drone in any direction in 3D. Setting a new target value simply publishes

the velocity messages with the desired direction without considering the heading of the drone.

9 RELATEDWORK
Early domain specific languages for robotics were proprietary and tied to specific platforms. For

a detailed survey, see [Nordmann et al. 2014]. With the lowering hardware costs and increasing

popularity, there is a growing interest in open and portable frameworks and languages [Bohrer

et al. 2018; Pinciroli and Beltrame 2016; Williams et al. 2003; Zufferey 2017]. Robot Operating System

Framework/System Dist. Sys Heterogeneous Sim Language Compiler V&V
ROSBuzz [St-Onge et al. 2017] ✓ ✓ ✓ Buzz ✓
PythonRobotics ✓ ✓ Python

PyRobot [Murali et al. 2019] ✓ ✓ Python

MRPT [Blanco 2009] ✓ C++

Robotarium [Pickem et al. 2017] ✓ ✓ Matlab

DRONA [Desai et al. 2017] ✓ ✓ P ✓ ✓
Live [Campusano and Fabry 2017] ✓ LPR ✓
Koord ✓ ✓ ✓ Koord ✓ ✓

(ROS) [Quigley et al. 2009] is the predominant member in this category. At its core, ROS supports a

publish-subscribe-based communication, and the ROS community has built drivers for numerous

hardware components.

Our implementation of the Koord abstractions for the drone and car platforms use ROS just

like thousands of other robotics products and projects. One of the main differences between our

approach and others, is that our framework also supports verification and validation (V&V) of

DRAs written in Koord. The table above gives a summary of robotics languages that have been

deployed on hardware.

ROSBuzz [St-Onge et al. 2017] supports the Buzz language, which doesn’t provide abstractions like

Koord for path planning and shared variables. The Live Robot Programming language [Campusano

and Fabry 2017] provides abstractions in terms of nested state machines and allows the program to

be changed while running. It does not support robot ensembles. Programming systems using the

sharedmemory paradigm have been developed for several distributed computing systems [Adve and

Gharachorloo 1996; Calder et al. 2011; DeCandia et al. 2007; Lakshman and Malik 2010; Nitzberg

and Lo 1991]. A position paper [Ghosh et al. 2018] proposed combining shared memory with

physical interactions in a high-level language. Starting from a similar core idea, this paper presents

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article . Publication date: November 2020.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Koord 27

a full language, develops its formalization, and the proof system that combines those abstractions.

P [Desai et al. 2013] and PSync [Drăgoi et al. 2016] are DSLs for asynchronous partially distributed

systems, but cyber-physical interactions are not supported. P has been integrated into the DRONA

framework [Desai et al. 2017] and the latter has very similar objectives to our work. However,

the approaches and solutions are very different. DRONA is a framework for multi-robot motion

planning and so far deployed only on drones. Koord and the underlying middleware aims to be

more general, and multiple applications have been deployed on cars and drones in both simulations

and hardware. The explicit model checker (using Zing) of DRONA relies on manual proofs of their

safe-plan-generator and path-executor, which are analogous to Koord function summaries and

controller assumptions. DRONA’s model checker explores reachable states upto a given depth

(number of transitions from an initial state). Koord proves inductive invariants using our own

symbolic executable semantics. Therefore, when all proof obligations are discharged for a candidate

invariant, the Koord system proves the invariant holds for all reachable states. Further, while our

Task application implements something similar to the distributed plan generator which is a built-in

feature for DRONA, Koord’s port interfaces allow portability across arbitrary planners.

10 CONCLUSIONS AND FUTUREWORK
Our case studies withKoord demonstrate that DRAs with sensing, actuation, path planning, collision

avoidance, and multi-robot coordination, can be succinct and amenable to formal analysis. A Koord
user only needs to understand Koord’s shared memory semantics, and the sensor and actuator

port abstractions. On the other hand, the hardware engineer will need to validate that the port

abstractions are indeed met by the target hardware platform through testing. The symbolic execu-

tion of Koord programs can partially automate analysis of inductive invariants of the distributed

coordination logic. Distributed robotics applications may have nondeterministic behaviors. We

found that inductive invariants, which were preserved during program transitions across every
event execution by any agent, can be completely verified by our approach.

Further, the Koord Prover allows the user to plug-in reachability analysis to validate/falsify con-

troller assumptions for platform-dependent controllers. We performed case studies on applications

that have been deployed on robots using Koord, and demonstrated how Koord semantics enables

separating formal analyses using the Koord Prover for the distributed coordination and discrete

programming logic, and DryVR for reachability analysis of the platform-dependent controllers.

It is difficult to expect that any language, including controller assumptions, can fully support

vastly different types of robots (which are constantly evolving). To that end, our design on top

of K semantics framework gives a flexible way to extend Koord and tailor it to specific robot

types on demand. At the same time, as each new robot type is added to Koord using a sensor and

actuator module, the same framework for formal analysis adapts automatically to verify applications

running on them. We plan to investigate the adaptability of the formal analysis framework further

on actual robots with diverse sensing and actuation capabilities. We also plan to extend our work

to include specification and verification of progress properties under fairness constraints for Koord
applications.

ACKNOWLEDGMENTS
The authors were supported in part by research grants from the National Science Foundation under

the Division of Computer and Network Systems (CNS) (award number 1629949 and 1544901) and

Computing and Communication Foundations (CCF) (award number 1846354).

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article . Publication date: November 2020.

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

28 Ritwika Ghosh, Chiao Hsieh, Sasa Misailovic, and Sayan Mitra

REFERENCES
Sarita V. Adve and Kourosh Gharachorloo. 1996. Shared memory consistency models: A tutorial. IEEE Computer 29 (1996),

66–76.

Rajeev Alur and David L. Dill. 1994. A theory of timed automata. Theoretical Computer Science 126 (1994), 183–235.
Hagit Attiya and Jennifer Welch. 2004. Distributed Computing: Fundamentals, Simulations and Advanced Topics. John Wiley

& Sons, Inc., USA.

Stanley Bak and Parasara Sridhar Duggirala. 2017. HyLAA: A tool for computing simulation-equivalent reachability for

linear systems. In Proceedings of the 20th International Conference on Hybrid Systems: Computation and Control. ACM,

ACM, New York, NY, USA, 173–178.

José-Luis Blanco. 2009. Contributions to Localization, Mapping and Navigation in Mobile Robotics. Ph.D. Dissertation. PhD. in
Electrical Engineering, University of Malaga. http://www.mrpt.org/Paper:J.L._Blanco_Phd_Thesis

Timo Blender, Thiemo Buchner, Benjamin Fernandez, Benno Pichlmaier, and Christian Schlegel. 2016. Managing a Mobile

Agricultural Robot Swarm for a seeding task. In IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics
Society. IEEE, 6879–6886.

Brandon Bohrer, Yong Kiam Tan, Stefan Mitsch, Magnus O. Myreen, and André Platzer. 2018. VeriPhy: Verified Controller

Executables from Verified Cyber-physical System Models. In Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation (Philadelphia, PA, USA) (PLDI 2018). ACM, New York, NY, USA,

617–630. https://doi.org/10.1145/3192366.3192406

Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam McKelvie, Yikang Xu, Shashwat Srivastav,

Jiesheng Wu, Huseyin Simitci, Jaidev Haridas, Chakravarthy Uddaraju, Hemal Khatri, Andrew Edwards, Vaman Bedekar,

Shane Mainali, Rafay Abbasi, Arpit Agarwal, Mian Fahim ul Haq, Muhammad Ikram ul Haq, Deepali Bhardwaj, Sowmya

Dayanand, Anitha Adusumilli, Marvin McNett, Sriram Sankaran, Kavitha Manivannan, and Leonidas Rigas. 2011.

Windows Azure Storage: A Highly Available Cloud Storage Service with Strong Consistency. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles (Cascais, Portugal) (SOSP ’11). ACM, New York, NY, USA,

143–157. https://doi.org/10.1145/2043556.2043571

Miguel Campusano and Johan Fabry. 2017. Live Robot Programming: The Language, its Implementation, and Robot API

Independence. Science of Computer Programming 133 (2017), 1–19.

Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. 2013. Flow*: An analyzer for non-linear hybrid systems. In

Computer Aided Verification, Natasha Sharygina and Helmut Veith (Eds.). Springer, Springer Berlin Heidelberg, Berlin,

Heidelberg, 258–263.

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin, Swami-

nathan Sivasubramanian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: Amazon’s Highly Available Key-value Store.

In Proceedings of Twenty-first ACM SIGOPS Symposium on Operating Systems Principles (Stevenson, Washington, USA)

(SOSP ’07). ACM, New York, NY, USA, 205–220. https://doi.org/10.1145/1294261.1294281

Ankush Desai, Vivek Gupta, Ethan Jackson, Shaz Qadeer, Sriram Rajamani, and Damien Zufferey. 2013. P: Safe Asynchronous

Event-driven Programming. SIGPLAN Not. 48, 6 (June 2013), 321–332. https://doi.org/10.1145/2499370.2462184

Ankush Desai, Indranil Saha, Jianqiao Yang, Shaz Qadeer, and Sanjit A Seshia. 2017. Drona: A framework for safe distributed

mobile robotics. In 2017 ACM/IEEE 8th International Conference on Cyber-Physical Systems (ICCPS). IEEE, ACM, New

York, NY, USA, 239–248.

Isil Dillig, Thomas Dillig, Alex Aiken, and Mooly Sagiv. 2011. Precise and Compact Modular Procedure Summaries for

Heap Manipulating Programs. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design
and Implementation (San Jose, California, USA) (PLDI ’11). Association for Computing Machinery, New York, NY, USA,

567–577. https://doi.org/10.1145/1993498.1993565

Cezara Drăgoi, Thomas A. Henzinger, and Damien Zufferey. 2016. PSync: A Partially Synchronous Language for Fault-

tolerant Distributed Algorithms. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (St. Petersburg, FL, USA) (POPL ’16). ACM, New York, NY, USA, 400–415. https://doi.org/10.

1145/2837614.2837650

Parasara Sridhar Duggirala, Sayan Mitra, and Mahesh Viswanathan. 2013. Verification of Annotated Models from Execu-

tions. In Proceedings of the Eleventh ACM International Conference on Embedded Software (Montreal, Quebec, Canada)

(EMSOFT’13). IEEE Press, Article 26, 10 pages.

Chuchu Fan, Bolun Qi, and Sayan Mitra. 2018. Data-Driven Formal Reasoning and Their Applications in Safety Analysis of

Vehicle Autonomy Features. IEEE Design & Test 35, 3 (2018), 31–38. https://doi.org/10.1109/MDAT.2018.2799804

Chuchu Fan, Bolun Qi, Sayan Mitra, and Mahesh Viswanathan. 2017. DryVR: Data-driven verification and compositional

reasoning for automotive systems. In Computer Aided Verification (CAV). Springer International Publishing, Cham,

441–461.

Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine

Girard, Thao Dang, and Oded Maler. 2011. SpaceEx: Scalable Verification of Hybrid Systems. In CAV (Lecture Notes in

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article . Publication date: November 2020.

http://www.mrpt.org/Paper:J.L._Blanco_Phd_Thesis
https://doi.org/10.1145/3192366.3192406
https://doi.org/10.1145/2043556.2043571
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1145/2499370.2462184
https://doi.org/10.1145/1993498.1993565
https://doi.org/10.1145/2837614.2837650
https://doi.org/10.1145/2837614.2837650
https://doi.org/10.1109/MDAT.2018.2799804

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Koord 29

Computer Science, Vol. 6806), Ganesh Gopalakrishnan and Shaz Qadeer (Eds.). Springer, 379–395.

David Gauthier, Paul Freedman, Gregory Carayannis, and Alfred Malowany. 1987. Interprocess communication for

distributed robotics. IEEE Journal on Robotics and Automation 3, 6 (1987), 493–504.

Mario Gerla, Eun-Kyu Lee, Giovanni Pau, and Uichin Lee. 2014. Internet of vehicles: From intelligent grid to autonomous

cars and vehicular clouds. In 2014 IEEE world forum on internet of things (WF-IoT). IEEE, 241–246.
Ritwika Ghosh. 2020. Separation of Distributed Coordination and Control for Programming Reliable Robotics. Ph.D. Dissertation.

Urbana-Champaign, IL, USA. Advisor(s) Sayan Mitra.

Ritwika Ghosh, Joao P. Jansch-Porto, Chiao Hsieh, Amelia Gosse, Minghao Jiang, Hebron Taylor, Peter Du, Sayan Mitra,

and Geir Dullerud. 2020. CyPhyHouse: A Programming, Simulation, and Deployment Toolchain for Heterogeneous

Distributed Coordination. In to appear in ICRA 2020. IEEE, Paris,France, 6 pages.
Ritwika Ghosh, Sasa Misailovic, and Sayan Mitra. 2018. Language Semantics Driven Design and Formal Analysis for

Distributed Cyber-Physical Systems: [Extended Abstract]. In Proceedings of the 2018 Workshop on Advanced Tools,
Programming Languages, and PLatforms for Implementing and Evaluating Algorithms for Distributed Systems (ApPLIED
’18). ACM, New York, NY, USA, 41–44. https://doi.org/10.1145/3231104.3231958 event-place: Egham, United Kingdom.

Sukumar Ghosh. 2014. Distributed systems: an algorithmic approach. Chapman and Hall/CRC.

Lars Grüne and Jürgen Pannek. 2017. Nonlinear model predictive control. In Nonlinear Model Predictive Control. Springer,
45–69.

Ge Guo and Wei Yue. 2012. Autonomous platoon control allowing range-limited sensors. IEEE Transactions on vehicular
technology 61, 7 (2012), 2901–2912.

Debra Hensgen, Raphael Finkel, and Udi Manber. 1988. Two Algorithms for Barrier Synchronization. Int. J. Parallel Program.
17, 1 (Feb. 1988), 1–17. https://doi.org/10.1007/BF01379320

Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. 1995. What’s decidable about hybrid automata?. In

ACM Symposium on Theory of Computing (Las Vegas, Nevada, USA) (STOC’95). Association for Computing Machinery,

New York, NY, USA, 373–382.

S. Karaman, A. Anders, M. Boulet, J. Connor, K. Gregson, W. Guerra, O. Guldner, M. Mohamoud, B. Plancher, R. Shin, and J.

Vivilecchia. 2017. Project-based, collaborative, algorithmic robotics for high school students: Programming self-driving

race cars at MIT. In 2017 IEEE Integrated STEM Education Conference (ISEC). IEEE, 195–203. https://doi.org/10.1109/

ISECon.2017.7910242

Michal Kvasnica, Pascal Grieder, Mato Baotić, and Manfred Morari. 2004. Multi-parametric toolbox (MPT). In Hybrid
systems: computation and control. Springer, 448–462.

Avinash Lakshman and Prashant Malik. 2010. Cassandra: a decentralized structured storage system. ACM SIGOPS Operating
Systems Review 44, 2 (2010), 35–40.

Steven M LaValle. 1998. Rapidly-exploring random trees: A new tool for path planning. Technical Report.
Nancy A. Lynch. 1996a. Distributed Algorithms. Morgan Kaufmann Publishers Inc., Cambridge.

Nancy A Lynch. 1996b. Distributed algorithms. Elsevier.
Johannes Meyer, Alexander Sendobry, Stefan Kohlbrecher, Uwe Klingauf, and Oskar von Stryk. 2012. Comprehensive

Simulation of Quadrotor UAVs Using ROS and Gazebo. In Simulation, Modeling, and Programming for Autonomous Robots,
Itsuki Noda, Noriaki Ando, Davide Brugali, and James J. Kuffner (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

400–411.

Pieter J Mosterman, David Escobar Sanabria, Enes Bilgin, Kun Zhang, and Justyna Zander. 2014. A heterogeneous fleet of

vehicles for automated humanitarian missions. Computing in Science & Engineering 16, 3 (2014), 90.

Adithyavairavan Murali, Tao Chen, Kalyan Vasudev Alwala, Dhiraj Gandhi, Lerrel Pinto, Saurabh Gupta, and Abhinav Gupta.

2019. PyRobot: An Open-source Robotics Framework for Research and Benchmarking. (2019). arXiv:arXiv:1906.08236

B. Nitzberg and V. Lo. 1991. Distributed shared memory: a survey of issues and algorithms. Computer 24, 8 (aug. 1991), 52
–60. https://doi.org/10.1109/2.84877

Arne Nordmann, Nico Hochgeschwender, and Sebastian Wrede. 2014. A Survey on Domain-Specific Languages in Robotics.
Springer International Publishing, Cham, 195–206. https://doi.org/10.1007/978-3-319-11900-7_17

D. Pickem, P. Glotfelter, L. Wang, M. Mote, A. Ames, E. Feron, and M. Egerstedt. 2017. The Robotarium: A remotely

accessible swarm robotics research testbed. In 2017 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 1699–1706. https://doi.org/10.1109/ICRA.2017.7989200

C. Pinciroli and G. Beltrame. 2016. Buzz: An extensible programming language for heterogeneous swarm robotics. In 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 3794–3800.

J Norberto Pires and JMG Sá Da Costa. 2000. Object-oriented and distributed approach for programming robotic manufac-

turing cells. Robotics and computer-integrated manufacturing 16, 1 (2000), 29–42.

Andr Platzer. 2018. Logical Foundations of Cyber-Physical Systems (1st ed.). Springer Publishing Company, Incorporated.

Jelica Protic, Milo Tomasevic, and Veljko Milutinovic. 1997. Distributed Shared Memory: Concepts and Systems. IEEE

Computer Society Press.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article . Publication date: November 2020.

https://doi.org/10.1145/3231104.3231958
https://doi.org/10.1007/BF01379320
https://doi.org/10.1109/ISECon.2017.7910242
https://doi.org/10.1109/ISECon.2017.7910242
https://arxiv.org/abs/arXiv:1906.08236
https://doi.org/10.1109/2.84877
https://doi.org/10.1007/978-3-319-11900-7_17
https://doi.org/10.1109/ICRA.2017.7989200

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

30 Ritwika Ghosh, Chiao Hsieh, Sasa Misailovic, and Sayan Mitra

Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob Wheeler, and Andrew Y. Ng. 2009.

ROS: an open-source Robot Operating System. In ICRA Workshop on Open Source Software. IEEE.
Redmond R Shamshiri, CorneliaWeltzien, IbrahimAHameed, Ian J Yule, Tony E Grift, Siva K Balasundram, Lenka Pitonakova,

Desa Ahmad, and Girish Chowdhary. 2018. Research and development in agricultural robotics: A perspective of digital

farming. (2018).

Grigore Rosu and Traian Florin Serbanuta. 2014. K Overview and SIMPLE Case Study. In Proceedings of International K
Workshop (K’11) (ENTCS, Vol. 304). Elsevier, Illinois, 3–56. https://doi.org/10.1016/j.entcs.2014.05.002

Giovanni Russo and Jean-Jacques E Slotine. 2011. Symmetries, stability, and control in nonlinear systems and networks.

Physical Review E 84, 4 (2011), 041929.

Shun Yan Cheung and V. S. Sunderam. 1995. Performance of barrier synchronization methods in a multiaccess network.

IEEE Transactions on Parallel and Distributed Systems 6, 8 (1995), 890–895.
Hussein Sibai, Navid Mokhlesi, Chuchu Fan, and Sayan Mitra. 2020. Multi-Agent Safety Verification using Symmetry

Transformations. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer
International Publishing, Cham, 173–190.

David St-Onge, Vivek Shankar Varadharajan, Guannan Li, Ivan Svogor, and Giovanni Beltrame. 2017. ROS and Buzz:

consensus-based behaviors for heterogeneous teams. CoRR abs/1710.08843 (2017). arXiv:1710.08843 http://arxiv.org/abs/

1710.08843

Sebastian Thrun et al. 2002. Robotic mapping: A survey. Exploring artificial intelligence in the new millennium 1, 1-35 (2002),

1.

Brian C Williams, Michel D Ingham, Seung H Chung, and Paul H Elliott. 2003. Model-based programming of intelligent

embedded systems and robotic space explorers. Proc. IEEE 91, 1 (2003), 212–237.

Greta Yorsh, Eran Yahav, and Satish Chandra. 2008. Generating Precise and Concise Procedure Summaries. In Proceedings of
the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Francisco, California,

USA) (POPL ’08). Association for Computing Machinery, New York, NY, USA, 221–234. https://doi.org/10.1145/1328438.

1328467

Damien Zufferey. 2017. The REACT language for robotics.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article . Publication date: November 2020.

https://doi.org/10.1016/j.entcs.2014.05.002
https://arxiv.org/abs/1710.08843
http://arxiv.org/abs/1710.08843
http://arxiv.org/abs/1710.08843
https://doi.org/10.1145/1328438.1328467
https://doi.org/10.1145/1328438.1328467

	Abstract
	1 Introduction
	2 Overview
	2.1 The Koord language
	2.2 Semantics and decomposed verification
	2.3 Koord Compiler, Implementation, and Simulator
	2.4 Engineering reliable DRAs

	3 The Koord Language
	3.1 Syntax
	3.2 Robot and System Configurations
	3.3 Semantics
	3.4 Synchronization and consistency

	4 Verifying Koord programs
	4.1 Reachable configurations
	4.2 Decomposing invariance verification
	4.3 Proof Obligations for Inductive Invariants

	5 Case Study: Distributed formation control
	6 Case Study: Distributed delivery
	7 Case study: Distributed Mapping
	8 Implementing Koord: The CyPhyHouse Toolchain
	8.1 CyPhyHouse Middleware
	8.2 Code Generation
	8.3 Interface with Platform-specific Controllers

	9 Related Work
	10 Conclusions and Future Work
	Acknowledgments
	References

